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Preface

A book that furnishes no quotations is, me judice, no book – it is a
plaything.

TL Peacock: Crochet Castle

The paradigm presented in this book is proposed as an agent programming language.
The book charts the evolution of the language from Prolog to intelligent agents. To a
large extent, intelligent agents rose to prominence in the mid-1990s because of the
World Wide Web and an ill-structured network of multimedia information. Agent-
oriented programming was a natural progression from object-oriented programming
which C++ and more recently Java popularized. Another strand of influence came
from a revival of interest in robotics [Brooks, 1991a; 1991b].

The quintessence of an agent is an intelligent, willing slave. Speculation in the area of
artificial slaves is far more ancient than twentieth century science fiction. One
documented example is found in Aristotle’s Politics written in the fourth century BC.
Aristotle classifies the slave as “an animate article of property”. He suggests that
slaves or subordinates might not be necessary if “each instrument could do its own
work at command or by anticipation like the statues of Daedalus and the tripods of
Hephaestus”. Reference to the legendary robots devised by these mythological
technocrats, the former an artificer who made wings for Icarus and the latter a
blacksmith god, testify that the concept of robot, if not the name, was ancient even in
Aristotle’s time. Aristotle concluded that even if such machines existed, human
slaves would still be necessary to render the little personal services without which life
would be intolerable.

The name robot comes from the Czech words for serf and forced labor. Its usage
originates from Karel Capek’s 1920s play Rossum’s Universal Robots in which
Rossum, an Englishman, mass-produced automata. The play was based on a short
story by Capek’s brother. The robots in the play were not mechanical but grown
chemically.  Capek dismissed “metal contraptions replacing human beings” as “a
grave offence against life”.  One of the earliest film robots was the replica Maria in
Fritz Lang’s 1927 classic Metropolis. The academic turned science fiction writer
Isaac Asimov (1920–1992) introduced the term robotics when he needed a word to
describe the study of robots in Runaround [1942].  Asimov was one of the first
authors to depart from the Frankenstein plot of mad scientist creating a monster and
to consider the social implications of robots.

An example of an automaton from the dark ages is a vending machine for holy water
proposed by Hero of Alexandria around 11 AD. A modern reincarnation is Hoare’s
choc machine [Hoare, 1985] developed to motivate the computational model CSP
(Communicating Sequential Processes). The word automaton, often used to describe
computers or other complex machines, comes from the same Greek root as
automobile meaning self-mover. Modern science owes much to the Greek tradition.
Analysis of the forms of argument began with Empedocles and the importance of
observation stems from Hippocrates. The missing ingredients of Greek science
compared with the science of today were supplied by the Age of Reason. These were
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the need for deliberately contrived observation - experiments; the need for inductive
argument to supplement deduction; and the use of mathematics to model observed
phenomena. The most important legacy of seventeenth century science is technology,
the application of science. Technology has expanded human capability, improved
control over the material world, and reduced the need for human labor. Willing slaves
are, perhaps, the ultimate goal of technology.

Industrial robots appeared in the late 1950s when two Americans, Devol and
Engelberger, formed the company Unimation. Take-up was slow and Unimation did
not make a profit for the first fourteen years. The situation changed in the mid-1980s
when the automobile industry, dissatisfied with trade union disruption of production,
turned to robot assembly. However, the industrial robot industry overextended as
governments curtailed trade union power and the market saturated. Many firms,
including Unimation, collapsed or were bought out by end product manufacturers.
Today, the big producer is Japan with 400 000 installed robots compared to the US
with over 70 000 and the UK with less than 10 000.

With pre-Copernican mentality, people will only freely admit that humans possess
intelligence. (This, possibly, should be qualified to mean most humans on most
occasions.) Humans can see, hear, talk, learn, make decisions, and solve problems. It
seems reasonable that anyone attempting to reproduce a similar artificial capability
would first attempt emulating the human brain. The idea that Artificial Intelligence
(AI) should try to emulate the human nervous system (brain cells are nerve cells) was
almost taken for granted by the twentieth century pioneers of AI. Up until the late
1960s talk of electronic brains was common place.

From Rossum’s Universal Robots in Carel Kapek’s vision to HAL in the film 2001,
intelligent machines provide some of the most potent images of the late twentieth
century. The 1980s were, indeed, a good time for AI research. In the 1970s AI had
become something of a backwater in governmental funding, but all that changed
dramatically because of the Japanese Fifth Generation Initiative. At the beginning of
the 1980s, MITI, the Japanese equivalent of the Department for Trade and Industry,
announced that Japan was to concentrate on knowledge based systems as the cutting
edge of industrial development. This sent tremors of commercial fear through the
corridors of power of every country that had a computing industry. These
governments had seen national industries such as shipbuilding, automobile
manufacturing, and consumer electronics crumble under intensive Japanese
competition. In what retrospectively seems to be a halfhearted attempt to target
research funds to industrially relevant information technology, a few national and
multinational research programs were initiated. A major beneficiary of this funding
was AI. On short timescales, commercial products were supposed to spring forth fully
armed from basic research.

Great advances in computer hardware were made in this decade with computing
power increasing a thousandfold. A computer defeated the world backgammon
champion and a computer came in joint first in an international chess tournament,
beating a grandmaster along the way. This, however, did not augur the age of the
intelligent machine. Genuine progress in AI has been painfully slow and industrial
take-up has been mainly limited to a few well-publicized expert systems.
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In the mid-1980s, it was envisaged that expert systems that contain thousands of rules
would be widely available by the end of the decade. This has not happened; industrial
expert systems are relatively small and narrowly focused on specific domains of
knowledge, such as medical diagnosis. As researchers tried to build more extensive
expert systems major problems were encountered.

There are two reasons why game playing is the only area in which AI has, as yet,
achieved its goal. Though complex, chess is a highly regular, codifiable problem
compared with, say, diagnosis. Further, the algorithms used by chess playing
programs are not usually based on expert systems. Rather than soliciting knowledge
from chess experts, successful game playing programs rely mainly on guided brute
force search of all possible moves using highly powerful conventional multiprocessor
machines. In reality, AI has made as much progress as other branches of software
engineering. To a large extent, its dramatic changes of fortune, boom and bust, are
due to fanatical proponents who promise too much. The timescale predictions of the
Japanese now look very fanciful indeed. AI has been oversold more than once.

A common reaction to the early efforts in AI was that successful replication of human
skills would diminish human bearers of such skills. A significant outcome of AI
research is how difficult the simplest skills we take for granted are to imitate. AI is a
long-term problem, a marathon, and not a sprint competition with the Japanese.
Expert systems are only an early staging post on the way to developing intelligent
machines.

AI pioneered many ideas that have made their way back into mainstream computer
science. These include timesharing, interactive interpreters, the linked list data type,
automatic storage management, some concepts of object-oriented programming,
integrated program development environments, and graphical user interfaces.
Whatever else it achieved, the Japanese Initiative provoked a chain of increased
governmental funding for Information Technology reaction around the world from
which many, including the authors, benefited.

According to Jennings et al. [1998], the fashion for agents “did not emerge from a
vacuum” (who would have imagined it would?) Computer scientists of different
specializations artificial intelligence, concurrent object-oriented programming
languages, distributed systems, and human-computer interaction converged on similar
concepts of agent. Jennings et al. [1998] state, “Object-oriented programmers fail to
see anything novel or new in the idea of agents,” yet they find significant differences
between agents and objects. This is because their comparison only considers
(essentially) sequential object-oriented programming languages such as Java. Had
they considered concurrent object-oriented programming languages they would have
found fewer differences.

Three languages have been promoted for agent development: Java, Telescript, and
Agent-TCL. None of these are concurrent object-oriented languages.  Java, from
SUN Microsystems, is advocated for agent development because it is platform
independent and integrates well with the World Wide Web. Java does, however,
follow the tradition of interpreted, AI languages but is it not sympathetic to symbolic
programming. Telescript, from General Magic, was the first commercial platform
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designed for the development of mobile agents. The emphasis is on mobility rather
than AI applications. Agent-TCL [Gray et al., 1996] is an extension of TCL (Tool
Command Language) which allows mobile code. While string based, TCL does not
have a tradition of AI applications. Programs are not inductively defined, as is the
case with Lisp or Prolog.

This monograph describes a concurrent, object-oriented, agent programming
language that is derived from the AI tradition. A working knowledge of Prolog is
necessary to fully appreciate the arguments. The monograph is divided into two parts.
The first part, Chaps. 1–5, describes the evolution of the paradigm of Guarded
Definite Clauses (GDC). If the paradigm is serious, and more than a fashion, then it is
necessary to to describe its applications. This is done in the second part of the
monograph, Chaps. 6–10. To set the paradigm in context, Chap. 1 provides an
irreverent survey of the issues of AI. Chap. 2 completes the background to the
paradigm with a retrospective rationale for the Japanese Fifth Generation Initiative.
Chap. 3 describes how the paradigm evolved from Prolog with the environment
change of multiprocessor machines. Included in this chapter is a chronology of the
significant developments of GDC. Chap. 4 explores the manifestations of the vital
ingredient of the paradigm - event driven synchronization. Chap. 5 compares and
contrasts the language evolved with actor languages. The main difference is that
GDC is an actor language with the addition of inductively defined messages.

The second part of the book begins with Chap. 6, which illustrates the advantages of
GDC in parallel and distributed search. Chap. 7 describes the specialization to
distributed constraint solving. Chap. 8 generalizes the chapters on search to meta-
interpretation. An affinity for meta-interpretation has long been a distinguishing
feature of AI languages. Chap. 9 describes how the overhead of meta-interpretation
can be assuaged with partial evaluation. Chap. 10 concludes with the application of
GDC to robotics and multi-agent systems.

While GDC as such is not implemented, it differs only marginally from KL1C, a
language developed by the Japanese Fifth Generation Computer Systems Initiative.
The Institute for New Generation Computer Technology (ICOT) promoted the Fifth
Generation Computer Systems project under the commitment of the Japanese
Ministry of International Trade and Industry (MITI). Since April 1993, ICOT has
been promoting the follow-on project, ICOT Free Software (IFS), to disseminate the
research:

According to the aims of the Project, ICOT has made this software,
the copyright of which does not belong to the government but to
ICOT itself, available to the public in order to contribute to the
world, and, moreover, has removed all restrictions on its usage that
may have impeded further research and development in order that
large numbers of researchers can use it freely to begin a new era of
computer science.

AITEC, the Japanese Research Institute for Advanced Information Technology, took
over the duties of ICOT in 1995. The sources of KL1 and a number of applications
can be obtained via the AITEC home page: http://www.icot.or.jp/AITEC. KL1C runs
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under Linux and all the GDC programs in this monograph will run with little or no
modification.

Despite their best efforts, the reader will find that the authors’ cynicism shows
through since they, like Bernard Shaw, believe that all progress in scientific endeavor
depends on unreasonable behavior. In Shaw’s view the common perception of
science as a rational activity, in which one confronts evidence of fact with an open
mind, is a post-rationalization. Facts assume significance only within a pre-existing
intellectual structure that may be based as much on intuition and prejudice as on
reason. Humility and reticence are seldom much in evidence and the scientific heroes
often turn out to be intellectual bullies with egos like carbuncles.

The authors are very grateful to Jean Marie Willers and Peter Landin for the onerous
task of proof reading earlier drafts of this monograph. Thanks are also due to our
editors at Springer-Verlag, Ingrid Beyer, Alfred Hofmann, and Andrew Ross. Each
author would like to say that any serious omissions or misconceptions that remain are
entirely the fault of the other author.

January 1999 Matthew M Huntbach

Graem A Ringwood
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Chapter 1

The Art in Artificial Intelligence

Art is the imposing of pattern on experience, and our aesthetic
enjoyment of it is recognition of the pattern.

AN Whitehead (1861–1947)

To better distinguish between historical precedent and rational argument, this first
chapter gives an account of some of the intellectual issues of AI. These issues have
divided AI into a number of factions – competing for public attention and, ultimately,
research funding. The factions are presented here by an analogy with the movements
of Fine Art. This is an elaboration of an idea due to Jackson [1986] and Maslov
[1987]. The title of the chapter derives from Feigenbaum [1977].

The different movements in AI arose like their artistic counterparts as reactions
against deficiencies in earlier movements. The movements of AI variously claim to
have roots in logic, philosophy, psychology, neurophysiology, biology, control the-
ory, operations research, sociology, economics and management. The account that
follows is peppered with anecdotes. The more ancient anecdotes indicate that the
issues that concern this product of the latter half of the 20th century have deep roots.

1.1 Realism

... used vaguely as naturalism, implying a desire to depict things
accurately and objectively.

[Chilvers and Osborne, 1988]

A paper in 1943 by McCulloch and Pitts marks the start of the Realist Movement. It
proposed a blueprint for an artificial neuron that claimed to blend the authors’ inves-
tigations into the neurophysiology of frogs, logic – as represented in Principia
Mathematica [Whitehead and Russell, 1910–13] and computability [Turing, 1936].
The state of an artificial neuron was conceived as

... equivalent to the proposition that proposed its adequate stimulus.

Artificial neurons are simple devices that produce a single real-valued output in re-
sponse to possibly many real-valued inputs. The strength of the output is a threshold
modulated, weighted sum of the inputs. An appropriate network of artificial neurons
can compute any computable function. In particular, all the Boolean logic connec-
tives can be implemented by simple networks of artificial neurons.

Parallel processing and robustness were evident in the early days of the Realist
Movement. In an interview for the New Yorker Magazine in 1981, Minsky described
a machine, the Snarc, which he had built in 1951, for his Ph.D. thesis:
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We were amazed that it could have several activities going on at
once in this little nervous system. Because of the random wiring it
had a sort of failsafe characteristic. If one neuron wasn’t working it
wouldn’t make much difference, and with nearly 300 tubes and
thousands of connections we had soldered there would usually be
something wrong somewhere ... I don’t think we ever debugged our
machine completely. But it didn’t matter. By having this crazy ran-
dom design it was almost sure to work no matter how you built it.

A war surplus autopilot from a B24 bomber helped the Snarc simulate a network of
40 neurons.

Minsky was a graduate student in the Mathematics Department at Princeton. His
Ph.D. committee was not convinced what he had done was mathematics. Von Neu-
mann, a member of the committee, persuaded them:

If it weren’t math now it would be someday.

In 1949, Hebb, a neurophysiologist, wrote a book, The Organization of Behavior,
which attempted to relate psychology to neurophysiology. This book contained the
first explicit statement that learning can be achieved by modifying the weights of the
summands of artificial neurons. In 1955, Selfridge devised a neurologically inspired
network called Pandemonium that learned to recognize hand-generated Morse code.
This was considered a difficult problem, as there is a large variability in the Morse
code produced by human operators. At the first workshop on AI (which lasted two
months) held at Dartmouth College, Rochester [1956], described experiments to test
Hebb’s theory. The experiments simulated a neural network by using a “large” digital
computer. At the time, an IBM 704 with 2K words of memory was large and Roch-
ester worked for IBM. Widrow and Hoff [1960] enhanced Hebb’s learning methods.

The publication of Principles of Neurodynamics [Rosenblatt, 1962] brought the Per-
ceptron, a trainable pattern-recognizer, to public attention. The Perceptron had vari-
ous learning rules. The best known of these was supported by a convergence theorem
that guaranteed the network could learn any predicate it could represent. Furthermore,
it would learn the predicate in a finite number of iterations of the learning rule.

By 1969, while digital computers were beginning to flourish, artificial neurons were
running into trouble: networks often converged to metastable states; toy demonstra-
tions did not scale up. Minsky and Papert [1969], “appalled at the persistent influence
of Perceptrons,” wrote Perceptrons: An Introduction to Computational Geometry that
contained a critique of Perceptron capability:

Perceptrons have been widely publicized as “pattern recognition”
or “learning” machines and as such have been discussed in a large
number of books, journal articles, and voluminous reports. Most of
this writing is without scientific value ... The time has come for
maturity, and this requires us to match our speculative enterprise
with equally imaginative standards of criticism.

This attack was particularly damning because the authors ran an influential AI re-
search laboratory at MIT. Minsky had, after all, done his Ph.D. in neural nets. The
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attack was only addressed at Perceptrons, which are, essentially, single layer net-
works. Although Perceptrons can learn anything they were capable of representing,
they could represent very little. In particular, a Perceptron cannot represent an exclu-
sive-or. Minsky and Papert determined that Perceptrons could only represent linearly
separable functions.

Multiple layers of Perceptrons can represent anything that is computable (Turing
complete [Minsky, 1967]), but general methods for training multilayers appeared to
be elusive. Bryson and Ho [1969] developed back propagation, a technique for train-
ing multilayered networks, but this technique was not widely disseminated. The ef-
fect of the Minsky and Papert’s critique was that all US Government funding in neu-
ral net research was extinguished.

1.2 Purism

They set great store by the lesson inherent in the precision of ma-
chinery and held that emotion and expressiveness should be strictly
excluded apart from the mathematical lyricism which is the proper
response to a well-composed picture.

[Chilvers and Osborne, 1988]

With the availability of analogue computers in the 1940s, robots began to appear a
real possibility. Wiener [1948] defined cybernetics as the study of communication
and control in animal and machine. The word cybernetics derives from the Greek
kubernetes, meaning steersman. Plato used the word in an analogy with diplomats.
One of the oldest automatic control systems is a servo; a steam powered steering
engine for heavy ship rudders. Servo comes from the Latin servitudo from which
English inherits servitude and slave. Cybernetics marked a major switch in the study
of physical systems from energy flow to information flow.

In the period after Plato’s death, Aristotle studied marine biology but faced with the
enormous complexity of phenomena, despaired of finding explanations in Platonic
rationalism. In opposition to his teacher, Aristotle concluded animate objects had a
purpose. In 1943, Rosenbleuth et al. proposed that purpose could be produced in
machines using feedback. The transmission of information about the performance
back to the machine could be used to modify its subsequent behavior. It was this
thesis that gave prominence to cybernetics.

Much of the research in cybernetics sought to construct machines that exhibit intelli-
gent behavior, i.e. robots. Walter’s Turtle [1950] is an early example of an autono-
mous robot. A finite state machine with four states can describe its behavior. In state
1, the robot executes a search pattern, roaming in broad loops, in search of a light
source. If it detects a bright light source in state one, it changes to state two and
moves towards the source. If the light source becomes intense, the robot moves to
state three and swerves away from the light. The triggering of the bump switch causes
transition to state four, where it executes a reverse right avoiding maneuver. Interest
in cybernetics dwindled with the rise of the digital computer because the concept of
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information became more important than feedback. This was encouraged by Shan-
non’s theory of information [Shannon, 1948; Shannon and Weaver, 1949]. Shannon
was a Bell Telephones communication engineer. His investigations were prompted by
the needs of the war effort, as was the development of computers and operations
research.

1.3 Rococo

Style of art and architecture, characterized by lightness, playful-
ness ... a love of complexity of form.

[Chilvers and Osborne, 1988]

At the same first conference on AI at which Rochester explained his experiments
with neural nets, Samuel [1959] described some game playing programs he had de-
veloped. Samuel had been working on checkers as early as 1948 and had produced a
system that learnt to play checkers to Grandmaster level. The system had a number of
numerical parameters that were adjusted from experience. Samuel’s program played a
better game than its creator and thus dispelled the prejudice that computers can only
do what they are programmed to do. The program was demonstrated on television in
1956 creating great public interest. While the learning mechanism predated Hebb’s
mechanism for artificial neurons, the success of the checker player was put down to
Samuel’s expertise in the choice of parameters.

Samuel’s achievement was overshadowed because checkers was considered less
intellectually demanding than chess. An ability to play chess has long been regarded
as a sign of intelligence. In the 18th-century a chess-playing automaton was con-
structed by Baron Wolfgang von Kempelen. Officially called the Automaton Chess
Player, it was exhibited for profit in French coffeehouses. Its popular name, the Turk,
was due to its form that consisted of a carved Turkish figurine seated behind a chest.
The lid of the chest was a conventional chessboard. By rods emanating from the
chest, the figurine was able to move the chess pieces on the board. The Turk played a
tolerable game and usually won. While it was readily accepted it was a machine,
curiosity as to how it functioned exposed a fraud. A vertically challenged human
chess expert was concealed in the cabinet below the board. The Turk ended in a mu-
seum in Philadelphia in 1837 and burned with the museum in 1854. A detailed de-
scription of the Turk is given by Levy [1976].

In 1846, Babbage [Morrison and Morrison, 1961] believed his Analytical Engine,
were it ever completed, could be programmed to play checkers and chess. The Span-
ish Engineer, Leonardo Torres y Quevedo built the first functional chess-playing
machine around 1890. It specialized in the KRK (king and rook against king) end-
game. Norbert Wiener’s [1948] book, Cybernetics, included a brief sketch of the
functioning of a chess automaton.

Zuse [1945], the first person to design a programmable computer, developed ideas on
how chess could be programmed. The idea of computer chess was popularized by an
article in Scientific American [Shannon, 1950]. Shannon had been instrumental in the
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rise of the digital computer. In his MIT master’s thesis of 1938, Shannon used the
analogy between logical operators and telephone switching devices to solve problems
of circuit design. Shannon [1950] analyzed the automation of chess but he did not
present a program. According to Levy and Newborn [1991], Turing and Champer-
nowne produced the first chess-playing program, which was called Turochamp.
However, pen and paper executed the program. Turing was denied access to his own
research team’s computers by the British Government because computer chess was
considered a frivolous use of expensive resources.

Shannon [1950] argued that the principles of games such as chess could be applied to
serious areas of human activity such as document translation, logical deduction, the
design of electronic circuits and, pertinently, strategic decision making in military
operations. Shannon claimed that, while games have relatively simple well-defined
rules they exhibit behaviors sufficiently complex and unpredictable as to compare
with real-life problem solving. He noted that a game could be completely described
by a graph. Vertices of the graph correspond to positions of the game and the arcs to
possible moves. For a player who can comprehend the whole graph, the game be-
comes trivial. For intellectually substantial games, the whole graph is too large or
impossible to represent explicitly. It has been estimated [Thornton and du Boulay,
1992] that checkers has a graph with 10

40
 nodes while chess has 10

120 nodes and the
game of go has 10

170
 nodes.

The problem of the size of the graph can be approached piecewise. At each stage in a
game, there is a multiset of open nodes, states of play, that have been explored so far
but the consequences of which have not been developed. An exhaustive development
can be specified by iterating two steps, generate-and-test (not in that order):

While the multiset of open nodes is not empty
remove some node
if the node is terminal (a winning position)

stop
else

add the immediate successors of the node to the multiset
The object of the game then becomes to generate a terminal node while generating as
few other nodes of the graph as is necessary.

Exhaustive search by generate-and-test is a long established method of problem
solving where there is a need to filter out relevant information from a mass of irrele-
vancies. A classic example is Erastosthenes’ Sieve for determining prime numbers.
Erastosthenes was the Librarian of the Library of Alexandria circa 245–194 BC. He
gave the most famous practical example of ancient Greek mathematics: the calcula-
tion of the polar circumference of the Earth. The Greek word mathematike, surpris-
ingly, means learning.

Three immediate variations of generate-and-test can be realized:

� forward search in which the initial multiset of open nodes is a singleton, the start
node;

� backward search in which the initial multiset of open nodes are terminal nodes
and the accessibility relation is reversed;
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� opportunistic search in which the initial multiset of open nodes does not contain
the start node nor terminal nodes; the rules are used both forwards and back-
wards until both the start node and the finish node are produced.

Backward generate-and-test was known to Aristotle as means-ends analysis and de-
scribed in Nicomachean Ethics:

We deliberate not about ends, but about means. For a doctor does
not deliberate whether he shall heal, nor an orator whether he shall
persuade, nor a statesman whether he shall produce law and order,
nor does anyone deliberate his end. They must assume the end and
consider how and by what means it is attained and if it seems easily
and best produced thereby; while if it is achieved by one means
only they consider how it will be achieved by this and by what
means this will be achieved, till they come to the first cause, which
in order of discovery is last ... and what is last in the order of
analysis seems to be first in the order of becoming. And if we come
on an impossibility, we give up the search, e.g., if we need money
and this cannot be got; but if a thing appears possible we try to do
it.

Stepwise development does not reproduce the graph but a tree covering the graph.
The search tree is developed locally providing no indication of global connectivity.
Any confluence in the graph produces duplicate nodes in the search tree. Any cycles
in the graph are unwound to unlimited depth. This leads to the possibility of infinite
search trees even when the game graph is finite. At each node in the tree, there may
be any number of successors. Shannon suggests generating the tree breadth-first.
Breadth-first search chooses immediate descendants of all sibling nodes before con-
tinuing with the next generation. Breadth-first minimizes the number of generations
that must be developed to locate a terminal node.

As noted by Shannon, when storage is limited, more than one successor at each node
poses intractable problems for large (or infinite) game graphs. The number of open
nodes grows exponentially at each generation, a phenomenon known as combinato-
rial explosion. Lighthill [1972] coined the name in an infamous report that was re-
sponsible for a drastic cutback of research funding for artificial intelligence in the
UK:

One rather general cause for disappointments [in AI] has been ex-
perienced: failure to recognize the implications of the ‘combinato-
rial explosion’. This is a general obstacle to the construction of a ...
system on a large knowledgebase that results from the explosive
growth of any combinatorial expression, representing the number
of ways of grouping elements of the knowledgebase according to
particular rules, as the base size increases.

Leibniz was aware of combinatorial explosion some hundreds of years earlier [1765]:
Often beautiful truths are arrived at by synthesis, by passing from
the simple to the compound; but when it is a matter of finding out
exactly the means for doing what is required, Synthesis is not ordi-
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narily sufficient; and often a man might as well try to drink up the
sea as to make all the required combinations ...

Golomb and Baumbert [1965] gave a general description of a space saving form of
generate-and-test called backtracking. The development of the tree is depth-first, with
successors of the most recently chosen node expanded before considering siblings.
On reaching the end of an unsuccessful branch, control backtracks to the most re-
cently generated nodes. It has the advantage over breadth-first search of only requir-
ing the storage of the active branch of the tree. Additionally, depth-first search gener-
ally minimizes the number of steps required to locate the first terminal node. Golomb
and Baumbert do not claim originality for backtracking; it had been independently
discovered in many applications. They cite Walker [1960] for a general exposition.
Floyd [1967] noted that problems that can be solved by backtracking, may be simply
described by recursively defined relations.

Golomb and Baumbert [1965] pointed out that there are numerous problems that even
the most sophisticated application of backtracking will not solve in reasonable time.
Backtracking suffers from pathological behavior known as thrashing. The symptoms
are:

� looping – generating the same node when there are cycles in the game graph;
� late detection of failure – failure is only discovered at the bottom of long

branches;
� bad backtracking point – backtracking to the most recently generated nodes

which form a subtree of dead ends.
More seriously for automation, the search may never end; if a nonterminating branch
of the search tree (even if the graph is finite) is relentlessly pursued, a terminating
node that lies on some yet undeveloped branch will never be discovered.

1.4 Classicism

... a line of descent from the art of Greece and Rome ... sometimes
used to indicate a facial and bodily type reduced to mathematical
symmetry about a median axis freed from irregularities ...

[Chilvers and Osborne, 1988]

In contrast to game playing, the seemingly respectable manifestation of human intel-
ligence was theorem proving. Two computer programs to prove mathematical theo-
rems were developed in the early 1950s. The first by Davis [1957], at the Princeton
Institute of Advanced Studies, was a decision procedure for Presburger arithmetic (an
axiomatization of arithmetic with ordering and addition but not multiplication). This
program produced the first ever computer-generated proof of the theorem that the
sum of two positive numbers is a positive number. At the same first conference on AI
at which Rochester explained his experiments on neural nets, Newell, Shaw and
Simon [1956], from Carnegie Mellon University, stole the show with a theorem
prover called the Logic Theorist. The Logic Theorist succeeded in demonstrating a
series of propositional theorems in Principia Mathematica [Whitehead and Russell,
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1910–13]. This often cited but seldom read tome attempted to demonstrate that all
mathematics could be deduced from Frege’s axiomatization of set theory. (Principia
Mathematica followed the publication of Principia Ethica by another Cambridge
philosopher [Moore, 1903].) McCarthy, one of the principal organizers of the work-
shop, proposed the name Artificial Intelligence for the subject matter of the workshop
as a reaction against the dominance of the subject by cybernetics. The first 30 years
of this shift in emphasis was to be dominated by the attendees of the conference and
their students who were variously based at MIT, CMU, and Stanford.

By contrast with cybernetics, the goal of theorem proving is to explicate the relation
A1, ... An |- An+1 between a logical formula An+1, a theorem, and a set of given logical
formulas {A1, ... An}, the premises or axioms. There is an exact correspondence be-
tween theorem proving and game playing. The initial node is the set of axioms. The
moves are inference rules and subsequent nodes are sets of lemmas that are supersets
of the premises. A terminating node is a superset that contains the required theorem.
Theorem proving suffers more from combinatorial explosion than recreational games.
Since lemmas are accumulated, the branching rate of the search increases with each
step.

The intimacy of games and logic is further compounded by the use of games to pro-
vide a semantics for logic [Hodges, 1994]. The tableau or truth-tree theorem prover
can be interpreted as a game [Oikkonen, 1988]. The idea of game semantics can be
seen in the Greek dialektike, Socrates’ method of reasoning by question and answer
(as recorded by Plato). Many aspects of mathematics, particularly the axioms of
Euclidean geometry, derive from the Greeks. The Greek word geometria means land
survey. Gelerntner [1963], a colleague of Rochester at IBM, produced a Euclidean
geometry theorem prover. To combat the combinatorial explosion, he created a nu-
merical representation of a particular example of the theorem to be proved. The sys-
tem would first check if any lemma were true in the particular case. The program
derived what at first was thought to be a new proof of the Bridge of Asses. This basic
theorem of Euclidean geometry states that the base angles of an isosceles triangle are
equal. Later, it was discovered that the same proof had been given by Pappus in 300
AD.

At the 1957 “Summer Institute for Symbolic Logic” at Cornell, Abraham Robinson
noted that the additional points, lines or circles that Gelerntner used to focus the
search can be considered as ground terms in, what is now called, the Herbrand Uni-
verse. In a footnote, [Davis, 1983] questions the appropriateness of the name. The
Swedish logician Skolem [1920] was the first to suggest that the set of ground terms
was fundamental to the interpretation of predicate logic. The same idea reappeared in
the work of the French number theorist Herbrand [Herbrand, 1930; Drebden and
Denton, 1966]. The fundamental result of model theory, known as the Skolem–Her-
brand–Gödel theorem, is that a first-order formula is valid if and only if a ground
instance of the Skolem normal form (clausal form) of the negation of the formula is
unsatisfiable. A clause is a disjunction of literals (positive or negative atoms). Any set
of formulas can be algorithmically transformed into Skolem normal form. Skolemi-
zation can be represented as a game [Henkin, 1959]. Hintikka [1973] extended Hen-
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kin’s observation to logical connectives. The Skolem–Herbrand–Gödel theorem turns
the search for a proof of a theorem into a search for a refutation of the negation.

The principal inference rule for propositional clausal form is complementary literal
elimination. As the name suggests, it combines two clauses that contain complemen-
tary propositions, eliminating the complements. Complementary literal elimination is
a manifestation of the chain-rule and the cut-rule. One of the first automatic theorem-
provers to use complementary literal elimination was implemented by Davis and
Putnam [1960]. The Davis–Putnam theorem prover has two parts: one dealing with
the systematic generation of the Herbrand Universe (substituting variables in formu-
las by ground terms) and the other part concerned with propositional complementary
literal elimination. The enumeration of all ground terms, Herbrand’s Property B, is
the basis of the Skolem–Herbrand–Gödel theorem.

Herbrand’s Property B foundered on the combinatorial explosion of the number of
ground instances. Enumerating the ground terms requires instantiating universally
quantified variables at points in the search where insufficient information is available
to justify any particular choice. A solution to the premature binding of variables ap-
peared in a restricted form (no function symbols) in the work of the Swedish logician
Prawitz [1960]. Prawitz’s restricted form of unification enables a theorem prover to
postpone choosing instances for quantified variables until further progress cannot be
made without making some choice. Prawitz’s restricted form of unification was im-
mediately picked up and implemented by Davis [1963]. The work of Prawitz, Davis,
and Putnam inspired a team of scientists led by George Robinson at Argonne Na-
tional Laboratories (there are at least two other sons of Robin who worked in auto-
matic theorem proving) to pursue a single inference rule for clausal form. A member
of the team, Alan Robinson [1965], succeeded in combining complementary literal
elimination with the general form of unification (including function symbols) in an
inference rule called resolution. Martelli and Montanari [1982] present a more effi-
cient unification algorithm. This most general unifier algorithm for solving a set of
syntactic equality constraints was known to Herbrand (but obscurely expressed) as
Property A.

Resolution only went some way to reduce the intolerable redundancies in theorem
proving. It is common for theorem provers to generate many useless lemmas before
interesting ones appear. Looping (reproducing previous lemmas) is a serious problem
for automatic theorem provers. Various authors in the 1960s and early 1970s ex-
plored refinements of resolution. Refinements are inference rules that restrict the
number of successors of a node. Model elimination [Loveland, 1968] is essentially a
linear refinement. A resolution proof is linear if the latest resolvent is always an im-
mediate parent of the next resolvent. Proofs in which each new lemma is deducible
from a preceding one are conceptually simpler and easier to automate than other
types of proof. The branching rate was remarkably reduced with SL (selective linear)
resolution [Kowalski and Kuehner, 1971] which showed that only one selected literal
from each clause need be resolved in any refutation. In SL resolution, literal selection
is performed by a function. The necessity for fairness of the literal selection only
became apparent with the study of the semantics of Prolog, a programming language.
The selection can be made syntactic with ordered clauses [Reiter, 1971; Slagle 1971].
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An ordered clause is a sequence of distinct literals. However, ordered resolution is
not complete. Not all logical consequences can be established.

Efficiency was also traded for completeness with input resolution [Chang, 1970].
With input resolution, one parent of a resolvent must be an input clause (a premise).
It is a special case of linear resolution that not only reduces the branching rate but
also saves on the storage of intermediate theorems (they are not reused), an extra
bonus for implementation. Kuehner [1972] showed that any (minimally inconsistent)
clause set that has an input refutation is renameable as a set of Horn clauses. A Horn
Clause is a clause with at most one positive literal. The importance of definite clauses
for model theory was discovered somewhat earlier [McKinsey, 1943]. McKinsey
referred to definite clauses as conditional clauses. Horn [1951] extended McKinsey’s
results. Smullyan [1956a] called definite clauses over strings Elementary Formal
Systems, EFSs. EFSs are a special case of Post Production Systems where the only
rewrite rules are substitution and modus ponens. Malcev [1958] characterizes classes
of structures that can be defined by Horn clauses. He shows that in any such class,
every set of ground atoms has a minimal model. Cohen [1965] characterizes prob-
lems expressible in Horn clauses, which include many problems in algebra.

Literal selection is fair if candidate literals are not ignored indefinitely. Kuehner
imposed two further refinements on the theorem prover that he dubbed SNL for “Se-
lective Negative Linear”; the name suggests a refinement of SL resolution. Kuehner
anticipates resolvent selection by using ordered clauses. An ordered Horn Clause
contains at most one positive literal, which must be the leftmost. One parent of a
resolvent must be negative: that is each literal is a negated atom. Descendants of an
initial negative clause are used in subsequent resolutions (linearity). This description
of SNL will be familiar to readers with knowledge of the programming language
Prolog. SNL retains the need for the factoring inference rule required by SL resolu-
tion and is incomplete if the clause literal selection is not fair. Factoring merges uni-
fiable literals of the same sign in the same clause. Hill [1974] demonstrated for Horn
Clauses that factoring was unnecessary and that the selected literal need not be se-
lected by a function but can be chosen in an arbitrary manner. Hill called the resulting
theorem prover LUSH for Linear resolution with Unrestricted Selection for Horn
Clauses. This somehow became renamed as SLD [Apt and van Emden, 1982], the D
standing for definite clauses. A definite clause is one with exactly one positive literal.
The name suggests an application of SL to D that is misleading. SL requires both
factorization and ancestor resolution for completeness. An ancestor is a previously
derived clause.

1.5 Romanticism

The Romantic artist explored the values of intuition and instinct ...
it marked a reaction from the rationalism of the Enlightenment and
order of the Neo-classical style.

[Chilvers and Osborne, 1988]
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Newell and Ernst [1965] argued that heuristic proofs were more efficient than ex-
haustive search. Heuristics are criteria, principles, rules of thumb, or any kind of
device that drastically refines the search tree. The word comes from the ancient Greek
heruskin, to discover and is the root of Archimedes’ eureka. Newell and Simon satiri-
cally dubbed exhaustive search as the British Museum Algorithm. The name derives
from an illustration of the possible but improbable by the astronomer Authur Ed-
dington – if 1000 monkeys are locked in the basement of the British Museum with
1000 typewriters they will eventually reproduce the volumes of the Reading Room.
The Romantics’ belief that intelligence is manifested in node selection in generate-
and-test is summed up in An Introduction to Cybernetics [Ashby, 1956]:

Problem solving is largely, perhaps entirely, a matter of appropri-
ate selection.

From an etymological point of view, that intelligence should be related to choice is
not surprising. The word intelligence derives from the Latin intellego meaning I
choose among. In 1958, Simon claimed that a computer would be world chess cham-
pion within 10 years.

Newell drew inspiration from the heuristic search used in the Logic Theorist. The
Logic Theorist was able to prove 38 of the first 52 theorems in Chapter 2 of Principia
Mathematica.

We now have the elements of a theory of heuristic (as contrasted
with algorithmic) problem solving; and we can use the theory both
to understand human heuristic processes and to simulate such pro-
cesses with digital computers. Intuition, insight and learning are no
longer the exclusive possessions of humans: any large high-speed
computer can be programmed to exhibit them also.

It was claimed that one of the proofs generated by the Logic Theorist was more ele-
gant than Russell and Whitehead’s. Allegedly, the editor of the Journal of Symbolic
Logic refused to publish an article co-authored by the Logic Theorist because it was
not human.

The principle heuristic of the Logic Theorist, means-end analysis was abstracted in
the General Problem Solver, GPS [Newell and Simon, 1963]. On each cycle, best-
first search chooses an open node that is “most promising” for reaching a terminal
node. What is best might be determined by the cumulative cost of reaching the open
node. Breadth-first search can be described by minimizing the depth of the tree. In
means-ends analysis, selection is based on some measure of the “nearness” of the
open node to a terminal node. This requires a metric on states. Wiener’s [1948] book,
Cybernetics, included a brief sketch of the functioning of a possible computer chess-
playing program that included the idea of a metric, called an evaluation function, and
minimax search with a depth cut-off. Assigning to each state the distance between it
and some fixed state determines semantics (meaning) for the state space. (More gen-
erally, semantics is concerned with the relationship between symbols and the entities
to which they refer.) The metric provides a performance measure that guides the
search.
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A common form of expression of a terminal state is a set of constraints [Wertheimer,
1945]. A constraint network defines a set of instances of a tuple of variables
<v1… vn> drawn from some domain D1©…©Dn and satisfying some specified set of
relations, cj(v1… vn). This extra structure can be exploited for greater efficiency. The
backtracking algorithm of Golomb and Baumbert [1965] was proposed as a con-
straint-solving algorithm. Backtracking searches the domain of variables by generat-
ing and testing partial tuples <v1… vn> until a complete tuple satisfying the con-
straints is built up. If any one of the constraints is violated the search backtracks to an
earlier choice point. Golomb and Baumbert [1965] describe a refinement of depth-
first search, which they called preclusion (now known as forward checking) which
leads to a more efficient search. Rather than testing that the generated partial tuple
satisfies the constraints, the partial tuple and the constraints are used to prune the
choice of the next element of the tuple to be generated. The partial tuple and con-
straints are used to specify a subspace, Ei+1©...©En with Ej ²  Dj, from which re-
maining choices can be drawn. Leibniz [1765] knew about preclusion:

... and often a man might well try to drink up the sea as to make all
the required combinations, even though it is often possible to gain
some assistance from the method of exclusions, which cuts out a
considerable number of useless combinations; and often the nature
of the case does not admit any other method.

Constraint satisfaction replaces generate-and-test by generate and constrain. An ex-
ample of constraint solving described in Section 1.4 is Herbrand’s Property A in
theorem proving.

Constraint satisfaction is often accompanied by the heuristic of least commitment
[Bitner and Reingold, 1965], in which values are generated from the most constrained
variable rather than the order of variables in the tuple. The principle asserts that deci-
sions should be deferred for as long as is possible so that when they are taken the
chance of their correctness is maximized. This minimizes the amount of guessing and
therefore the nondeterminism. The principle of least commitment is used to justify
deferring decisions. Resolution theorem proving is an example of the general princi-
ple of least commitment. Least commitment can avoid assigning values to unknowns
until they are, often, uniquely determined. This introduces data-driven control that is
known as local propagation of constraints. With local propagation, constraint net-
works are often represented by graphs. When represented as a graph, a constraint is
said to fire when a uniquely determined variable is generated. The constraint graph
and the firing of local propagation deliberately conjure up the firing of neurons in
neural networks.

Constraint satisfaction was dramatically utilized in Sutherland’s Sketchpad [1963],
the first graphical user interface. A user could draw a complex object by sketching a
simple figure and then add constraints to tidy it up. Primitive constraints include
making lines perpendicular or the same length. Sketchpad monopolized a large main-
frame and the system used expensive graphics input and display devices. It was years
ahead of its time.



The Art in Artificial Intelligence 13

More general than preclusion is split-and-prune. Rather than directly generating in-
stances for the variables, the search generates tuples of domains <E1...En> where
Ei ² Di . At each step, the search splits and possibly discards part of the domain.
Splitting produces finer and finer bounds on the values the variables can take until the
component domains are empty (failure to satisfy) or sometimes singletons. The
method of split-and-prune was known to the ancient Greeks in the form of hierarchies
of dichotomous classification. Jevons [1879] argued that the procedure of cutting off
the negative part of a genus when observation discovers that an object does not pos-
sess a particular feature is the art of diagnosis. This technique has subsequently been
used in many expert systems. Aristotle strongly emphasized classification and catego-
rization. His Organon, a collection of works on logic, included a treatise called Cate-
gories that attempted high-level classification of biology. He introduced the ontology
genus and species but the sense now attached to the words is due to the work of 18th-
century Swedish biologist Linnaeus.

Stepwise refinement, the process whereby a goal is decomposed into subgoals that
might be solved independently or in sequence is a manifestation of split-and-prune. In
the language of game playing, the game graph is divided into subgraphs (not neces-
sarily disjoint). Search then consists of a number of searches. The first finds a se-
quence of subgraphs that join a subgraph containing the start node to a subgraph
containing the finish node. Then for each subgraph a path traversing it has to be
found. There is the complication that the terminal node of one subgraph must be the
initial node of another. This can enforce sequencing on the search. If the subgoals can
be further subdivided, the process becomes recursive.

The complexity-reducing technique of stepwise refinement was known to the Romans
as divide et impera (divide and rule) but is known today as divide and conquer. (Its
historical form suggests the Roman preoccupation with ruling; presumably, they
found conquering a lesser problem.) Using loop checking, keeping a record of all
nodes eliminated from the multiset of states, generate-and-test becomes a special case
of divide and conquer. In this extreme case, the graph is partitioned into one set con-
taining the current node and its nearest neighbors and another set containing all the
other nodes of the graph.

Stepwise refinement excels in certain situations, such as chess endgames, where look-
ahead fails miserably. By design, the graph of subgraphs has fewer nodes than the
original graph- searches are then less complex than the original. Stepwise refinement
is a manifestation of Descartes’ Principle of Analytic Reduction, an historic charac-
terization of scientific tradition [Pritchard, 1968]. The principle attempts to describe
reality with simple and composite natures and proposes rules that relate the latter to
the former. The process of identifying the simple phenomena in complex phenomena
was what Descartes meant by the word “analysis”. Ockham’s Razor, a minimization
heuristic of the 14th century is often invoked to decide between competing stepwise
refinements:

Entities should not be multiplied unnecessarily.

Interpreted in this context, it requires theories with fewer primitives be preferred to
those with more. The psychological experiments of Miller [1956] suggest that in a
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diverse range of human activities, performance falls off dramatically when we deal
with a number of facts or objects greater than seven. This limit actually varies be-
tween five and nine for different individuals. Consequently, it is known as the
“seven-plus-or minus two principle”.

Constraint solving and theorem proving were brought together in the planning system
STRIPS [Fikes and Nilsson, 1971]. STRIPS was the planning component for the
Shakey robot project at SRI. STRIPS overall control structure was modeled on New-
ell and Simons GPS and used Green’s QA3 [1969] as a subroutine for establishing
preconditions for actions.

1.6 Symbolism

The aim of symbolism was to resolve the conflict between the mate-
rial and spiritual world.

[Chilvers and Osborne, 1988]

Within a year of Shannon’s suggestion that the principles of game playing would be
useful in language translation, the first full-time researcher in machine translation of
natural language, Bar-Hillel, was appointed at MIT. The first demonstration of the
feasibility of automatic translation was provided in 1954 by collaboration between
Georgetown University and IBM. Using a vocabulary of 250 words, a carefully se-
lected set of 49 Russian sentences was translated into English. The launch of the
Russian Sputnik in 1957 provoked the US into large scale funding of automatic natu-
ral language translation.

During the next decade some research groups used ad-hoc approaches to machine
translation. Among these were IBM; the US Air Force; the Rand Corporation and the
Institute of Precision Mechanics in the Soviet Union. The Universities of Cambridge,
Grenoble, Leningrad, and MIT adopted theoretical approaches. Influential among the
theoretical linguistics groups was the one at MIT led by Chomsky [1957]. Chomsky’s
review of a book on language by the foremost behavioral psychologist of the day
became better known than the book.

In the first half of the 20th century, American psychology was dominated by Wat-
son’s theory of behaviorism. Watson held that learning springs from conditioning and
that conditioning is the most important force in shaping a person’s identity (nurture
not nature). The Russian Nobel Prize winner Pavlov was the first to demonstrate
conditioning with his infamous experiments on dogs. In his book Science and Human
Behavior, Skinner [1953] tries to reduce the psychology of organisms to stimulus
response pairs. In 1957, Skinner published Verbal Behavior, a detailed account of the
behaviorist approach to language learning. Chomsky had just published his own the-
ory, Syntactic Structures [Chomsky, 1957]. In his review of Skinner’s book, Chom-
sky argued that behaviorist theory did not address creativity in language – it did not
explain how a child could understand and make up sentences it had not heard before.
The review helped kill off research funding for behaviorism.
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The symbolic movement represented linguistic grammars as rewrite rules. This repre-
sentation was first used by ancient Indian grammarians (especially Panini circa 350
BC) for Shastric Sanskrit [Ingerman, 1967]. The oldest known rewrite grammar is the
set of natural numbers. The number 1 is the single initial sentence and the single
rewrite rule appends 1 to a previously constructed number. This method of counting,
where there is a one to one correspondence between a number and the number of
symbols used to represent it, appeared in many societies. Some historians of the
written word (e.g., [Harris, 1986]) suggest that numeracy predates literacy. In evi-
dence, Harris claims that societies that did not develop counting beyond the number
three did not achieve literacy by their own efforts.

Rewrite rules require a notion of pattern matching which in turn requires the notions
of subformula and an equivalence relation on formulas. Formulas are not restricted to
strings; they can be graphs. Two formulas, p and q, can be matched if f is a subfor-
mula of p, g a subformula of q and f and g are in the same equivalence class. Con-
strued in the terminology of game playing, one has an initial formula and a final for-
mula. The goal is to find a sequence of symbol replacements that will transform the
initial formula to the final formula.

Rewrite rules had been formalized by Post [1943] under the name of production sys-
tems. Maslov [1987] speculates on why many of Post’s results were rediscovered in
the ‘Symbolic Movement’:

There are times in the history of science when concrete knowledge
is valued above everything else, when empiricism triumphs and ab-
stract schemes are held in contempt. Then other periods come,
when scientists are interested primarily in theoretical concepts and
the tasks of growing a body of facts around these ideas are put
aside. (These periodic changes in scientific fashion are an impor-
tant component of the spiritual climate of a society and important
correlations can be found between different aspects of these
changes.) In this respect, science changed drastically after World
War II, leading to the creation of the theory of systems, cybernetics
and in particular the theory of deductive systems.

The earliest reference to unification, in fact, dates back to Post. Post recorded his
thoughts on the nature of mathematics, symbols and human reasoning in a diary (par-
tially published in [Davis, 1973]).

Maslov [1988] uses the alternative names calculus or deductive system for rewrite
rules. A deductive system has some initial symbols {A1, …An} and some schema for
deriving new symbols from the initial ones and those already constructed. In corre-
spondence with theorem proving, the initial symbols are called axioms, the schema
are inference rules and the set of derivable symbols, theorems. For Post, symbols
expressed a finite amount of information. As such, they could be encoded by words,
finite sequences of typographical letters drawn from an alphabet. Each letter itself
carries no information; their only property is the distinction of one letter from an-
other.
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The work of the ‘Symbolic Movement’, arguably, contributed more to computer
science than it did to linguistics. A hierarchy of increasingly complex grammars were
identified and classes of machine that can parse them developed:

Regular expressions Finite state machine
Context free grammar Stack machine
Context sensitive grammar Linear bounded automata
Recursively enumerable set Turing machine

An algorithm is a special case of a deductive system when at most one inference rule
is applicable to each axiom or theorem. The theory of algorithms of Turing and
Church has analogues in deductive systems. A set of words is said to be recursively
denumerable, if its members can be derived by a deductive system. Enumeration can
conveniently be achieved breadth-first with the inference rules used in a fixed order.
Markov [1954] gives a theory of algorithms based on deductive systems where the
rules are applied in a fixed order. The Church–Turing thesis [Church, 1936] is
equivalent to the belief that any set that can be generated or enumerated by any con-
structive means is recursively denumerable.

A relatively complex deductive system is Gentzen’s sequent calculus [Gentzen 1934;
Szabo, 1970]. The well-formed formulas of predicate calculus are the theorems of a
simpler deductive system (the rules of formation) which themselves use a deductively
generated set of variables (e.g., the natural numbers) as the components of its alpha-
bet. The hierarchy leads to two levels of implication, one material implication at the
object level, the formal language, and another consequence at the metalevel. Once
one level of implication is formalized, it is inevitable that its properties be discussed
at the metalevel. Complementary literal elimination at the object level is reflected in
the cut rule at the metalevel. Gentzen’s calculus is typical of multilevel constructions
whose theorems are the symbols of the uppermost layer of a hierarchy of deductive
systems built from simpler deductive systems that generate the symbols [Maslov,
1988].

Gentzen was a student of Hilbert [Reid, 1970] who pioneered the formalization of
mathematics as a symbol manipulation system. Hilbert’s program was to provide a
mathematical system that was complete (all truths should be provable), consistent
(nothing false can be proved), and decidable (there should be a mechanical procedure
for deciding if an assertion is true or false). Turing [1950] had proposed the idea that
symbol manipulation was a sufficient process for artificial intelligence. Newell and
Simon [1976] raised this view to the status of an hypothesis (in much the same sense
as Church–Turing computability hypothesis):

A physical system exercises its intelligence in problem solving by
search, that is, by generating and progressively modifying symbol
structures according to rules until it produces a solution structure.
The task of the symbol system is to use its limited processing re-
sources to generate tentative solutions, one after another, until it
finds one that satisfies the problem-defining test. A system would
exhibit intelligence to the extent that solutions have a high likeli-
hood of appearing early in the search or by eliminating search al-
together.
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The Physical Symbol Hypothesis had essentially been proposed earlier by the psy-
chologist Craik [1943]:

My hypothesis then is that thought models, or parallels, reality –
that its essential feature is not ‘the mind’, ‘the self’, ‘sense data’,
nor propositions but symbolism, and that this symbolism is largely
of the same kind as that which is familiar to us in mechanical de-
vices which aid thought and calculation.

Corresponding to the Universal Turing machine, there is a universal deductive system
that can imitate any other deductive system by encoding its rules of inference as axi-
oms. This universal deductive machine is (tersely) simplified by Smullyan [1956a]. A
more leisurely exposition is given by Fitting [1987]. According to Smullyan, a string
s is an element of a recursively denumerable set if and only if p(s) is a theorem of a
definite clause theory (with string concatenation as a primitive). Universal modus
ponens (substitution and detachment) is the only inference rule required for definite
clauses. (Smullyan’s name for definite clauses over strings is Elementary Formal
System.) Definite clause grammars were rediscovered by Colmerauer [1975] and
developed in the context of logic programming by Pereira and Warren [1980]. Smul-
lyan [1956b] gives, what is in effect, a minimal (Herbrand) model semantics for sets
of definite clauses. Definite clauses are even more generous than is necessary. Tärn-
lund [1977] showed that binary clauses are Turing complete. A binary clause is a
definite clause with one positive and one negative literal.

In the Symbolic Movement, optimism with machine translation was high but predic-
tions of imminent breakthroughs were never realized. As the inherent complexity in
linguistics became apparent, disillusionment grew. A disparaging anecdote of the
time concerned an automatic Russian–English translator. Given the adage “out of
sight out of mind” to translate into Russian and back to English it produced “the
invisible are insane”. The ‘brittleness’ of these small systems was claimed to be due
to over-specialization. The problem is that natural language is ambiguous and leaves
much unsaid. Understanding language was claimed to require understanding the
subject matter and the context, not just the structure of the utterance. This may now
seem obvious but was not obvious in the early 1960s. In a review of progress Bar-
Hillel [1960] argued that the common-sense barriers to machine translation could
only be overcome by the inclusion of encyclopedic knowledge. A report in 1966 by
an advisory committee of the National Research Council found that:

There has been no machine translation of a general scientific text
and none is in immediate prospect.

All US government funding for academic translation projects was cancelled.

1.7 Neo-Classicism

... characterized by a desire to recreate the heroic spirit as well as
the decorative trappings of the Art of Greece and Rome.

[Chilvers and Osborne, 1988]
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Wang [1960], who claimed to have more success with the classical approach to
proving the first 52 theorems in Principia Mathematica, than the Logic Theorist
refuted the work of Newell and Simon:

There is no need to kill a chicken with a butcher’s knife. Yet the im-
pression is that Newell, Shaw and Simon even failed to kill the
chicken.

The authors are not quite sure what this means but the intention is clear. Wang was a
prominent member of the classical school. The Neo-classical Movement proposed
logic as a sufficient language for representing common sense. Hayes [1985] called
this common-sense naive physics. In repost to claims that modern physics is not natu-
ral, Einstein claimed that common sense is the set of prejudices laid down in the first
eighteen years of life.

The Neo-classical Movement grew, largely, out of the work of McCarthy. McCarthy
was the principal organizer of the first workshop on AI held at Dartmouth College. In
1958, McCarthy put forward a computer program, the Advice Taker that like the
Geometry Theorem prover of Gelerntner was designed to use knowledge to search for
solutions to problems. The central theme of the Advice Taker was that first-order
predicate calculus promised to be a universal language for representing knowledge. In
this proposal, a computer system would perform deductions from axioms encoding
common-sense knowledge to solve everyday problems. An example used by McCar-
thy to illustrate the point, the monkey and bananas problem, is a classic of AI. (In this
problem, a monkey has to devise a plan to reach a bunch of bananas that are not di-
rectly accessible.) The Advice Taker was designed so that it could accept new axioms
in the normal course of operation allowing it to achieve competence in new areas
without being reprogrammed.

According to Gardner [1982], Leibniz was the first to envision a Universal Algebra
by which all knowledge, including moral and metaphysical truths could be expressed.
Leibniz proposed a mechanical device to carry out mental operations but his calculus,
which was based on equality, was so weak that it could not produce interesting re-
sults. The development of logic has its roots in the 19th century with the disturbing
discovery of non-Euclidean geometries.

Three of the early pioneers of logic were De Morgan, Boole, and Jevons [Kol-
mogorov and Yushkevich, 1992]. The word logic comes from the ancient Greek,
logike meaning the art of reasoning. Historians have argued that logic developed in
ancient Greece because of the democratic form of government. Citizens could shape
public policy through rhetoric. Aristotle had tried to formulate the laws, Syllogisms,
governing rational argument. After his death, his students assembled his teachings in
a treatise, the Organon (meaning tool). Syllogisms allow one to mechanically gener-
ate conclusions from premises. While Aristotle’s logic deals with generalizations
over objects, the deductive system is weak because it does not allow the embedding
of one generalization inside another. Aristotle did not believe that the entire mind was
governed by deductive processes but also believed in intuitive or common sense
reason.
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A major barrier to the generalization of syllogisms was a fixation on one-place predi-
cates. De Morgan [1846] gave the first systematic treatment of the logic of relations
and highlighted the sorts of inferences that Aristotle’s logic could not handle. Frege
gave substance to Leibniz’s dream by extricating quantifiers from Aristotle’s syllo-
gisms. In Critique of Pure Reason, Kant [1781] proposed that geometry and arithme-
tic are bodies of propositions that are neither contingent nor analytic. Frege did not
accept Kant’s philosophy that arithmetic was known synthetic a priori. Frege believed
that the meaning of natural language was compositional and put forward a formal
language, the Begriffsschrift (concept notation), to demonstrate his ideas. Frege’s
Begriffsschrift [1879] introduced the nesting of quantifiers but the notation was awk-
ward to use. The American logician Peirce [1883] independently developed the same
logic of relations as Frege but today’s notation is substantially due to Peano [1889].

Frege’s axiomatization of sets leads to paradoxes, the most famous of which was
discovered by Russell:

Let S be the set of elements that are not members of themselves. Is
S a member of itself or not?

Both yes and no hypothesis to the question lead to contradictions. This paradox is
similar to the Liar Paradox that was known to the ancient Greeks. The paradox con-
cerns a person who asserts: “I am lying.” The problem is again one of circularity.
Although Whitehead and Russell duplicated an enormous amount of Frege’s work in
Principia Mathematica, it was through this work that Frege’s ideas came to dominate
mathematics. Russell at first thought the paradox he described was a minor problem
that could be dealt with quickly. His collaborator on Principia Mathematica, White-
head, thought otherwise. Quoting from Browning’s poem, The Lost Leader, White-
head remarked gravely:

Never glad confident morning again.

Russell eventually proposed a hierarchy, a stratification of terms, which associates
with each a type. The type partitions terms into atoms, sets, sets of sets etc. Proposi-
tions of the form “x is a member of y” are then restricted so that if x is of type atom, y
must be of type set and if x is of type set y must be of type set of sets and so on. The
hierarchy breaks the circularity in the paradox and is another manifestation of hierar-
chy in deductive systems as described by Maslov [1988].

Both Frege’s and Whitehead and Russell’s presentation of inference was axiomatic,
also known as Hilbert style. Frege took implication and negation as primitive con-
nectives and used modus ponens and substitution as inference rules. Whitehead and
Russell used negation and disjunction as primitive connectives and disjunctive syllo-
gism as inference rule. In 1935, Gentzen developed natural deduction, a more natural
formulation of the Frege–Hilbert, axiomatic style. Natural deduction involves identi-
fying subgoals that imply the desired result and then trying to prove each subgoal. It
is a manifestation of the stepwise refinement formulation of generate-and-test.

McCarthy’s ideas for using logic to represent common-sense knowledge and Robin-
son’s resolution mechanism were first brought together by Green [1969]. Rather than
a theorem prover, Green implemented a problem solving system, QA3, which used a
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resolution theorem-prover as its inference mechanism. His paper was the first to show
how mechanical theorem-proving techniques could be used to answer other than yes-
no questions. The idea involved adding an extra nonresolvable accumulator literal
with free variables corresponding to the original question. If the refutation theorem
proving terminates, the variables in the accumulator literal are bound to an answer, a
counterexample.

Green, further, introduced state variables as arguments to literals in formulating ro-
bot-planning problems in predicate logic. Green’s QA3 was the brains of Shakey
[Moravec, 1981] an experimental robot at Stanford Research Institute. McCarthy and
Hayes [1969] refined Green’s ideas into situation calculus where states of the world,
or situations were reasoned about with predicate logic. In such a representation, one
has to specify precisely what changes and what does not change. Otherwise no useful
conclusions can be drawn. In analogy with the unchanging backgrounds of animated
cartoons, the problem is known as the frame problem. Many critics considered the
problem insoluble in first-order logic. The frame problem led McCarthy and Reiter to
develop theories of nonmonotonic reasoning – circumscription and default logic,
where the frame axioms become implicit in the inference rules. Circumscription is a
minimization heuristic akin to Ockham’s Razor. In the model theoretic formulation, it
only allows deductions that are common to all minimal models. The superficial sim-
plicity and economy of nonmonotonic logics contrasts with the encyclopedic knowl-
edge advocated in machine translation.

By a notoriously simple counterexample, the Yale Shooting Problem [Hanks and
McDermott, 1986], the circumscriptive solution to the frame problem was later
shown to be inadequate. In one form, the problem involves a turkey and an unloaded
gun. In a sequence of events the gun is loaded, one or more other actions may take
place and then the gun is fired at the turkey. The common-sense consequence is that
the turkey is shot. The problem is that there are two minimal models one in which the
turkey is shot and another in which it is not. In the unintended minimal model, the
gun is unloaded in-between loading and shooting. As theories were elaborated to
accommodate counterexamples, new counterexamples were elaborated to defy the
new theories.

1.8 Impressionism

... they were generally in sympathy with the Realist attitude ... the
primary purpose of art is to record fragments of nature or life.

[Chilvers and Osborne, 1988]

The frame and other problems of neo-classicism led to a general disillusionment with
logic as a representational formalism. Crockett [1994] cites the frame problem as one
symptom of the inevitable failure of the whole AI enterprise. The Yale shooting
problem led to grave doubts about the appropriateness of nonmonotonic logics
[McDermott, 1988]. Proposed solutions to the Yale shooting problem foundered on a
further counterexample, the Stolen Car problem [Kautz, 1986]. The mood of disillu-
sionment with logic is reflected in the satirical title of McDermott’s [1988] article
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which was derived from Kant’s Kritik der reinen Vernunft. It echoes an earlier attack
on AI by Dreyfus [1972] under the title, What Computers Can’t Do: A Critique of
Artificial Reason. While logic as a computational and representational formalism was
out of fashion, alternative ad hoc formalisms of knowledge representation were advo-
cated.

The ‘Rococo Movement’ believed that the secret of programming computers to play
good chess was look-ahead. If a program could develop the search tree further than
any grandmaster, it would surely win. The combinatorial explosion limited the depth
to which breadth-first tree development was able to produce a move in a reasonable
amount of time. In the 1940s, a Dutch psychologist, de Groot [1946], made studies of
chess novices and masters. He compared the speed with which masters and novices
could reconstruct board positions from five-second glances at a state of play. As
might be expected, chess masters were more competent than novices were. The mis-
takes masters made involved whole groups of pieces in the wrong position on the
board but in correct relative positions. When chess pieces were randomly assigned to
the chessboard, rather than arising from play, the masters faired no better than the
novices did. This suggests that particular patterns of play recur in chess games and it
is to these macroscopic patterns that masters become attuned.

Behaviorist mental models of long-term and short-term memory [Neisser, 1967] were
a major influence on the Impressionist School of AI. In a simplified form [Newell
and Simon, 1963], the memory model has a small short term memory (or database)
that contains active memory symbols and a large long term memory that contains
production rules for modifying the short term memory. Production rules take the
form of condition-action pairs. The conditions specify preconditions that the short-
term memory must satisfy before the actions can be effected. The actions are specific
procedures to modify the short-term memory.

Production rules were grouped into decision tables and used in database management
systems [Brown, 1962]. The rules are supplemented with a control strategy – an
effective method of scheduling rule application. Rules are labeled and metarules
control their application. Markov algorithms are a special case where a static prece-
dence on use of the rules is given. For ease of implementation, the conditions of pro-
duction systems are usually expressible with a small number of primitives such as
syntactic equality and order relations. Boolean combinations form compound condi-
tions. Using patterns in the working set to direct search was reflected in pattern di-
rected systems [Waterman and Hayes-Roth, 1978]. Patterns in the working set deter-
mine which rule to fire next.

AI and associationist psychology have an uneasy alliance that comes from the obser-
vation that neurons have synaptic connections with one another, making the firing of
neurons associate. In the late 1940s, a neurosurgeon, Penfield, examined the effects
of operations he performed on patients by inserting electrodes into their brains. Using
small electrical impulses, similar to those produced by neurons, he found that stimu-
lation of certain areas of the brain would reliably create specific images or sensations,
such as color and the recollection of events. The idea that the mind behaves associa-
tively dates back at least to Aristotle. Aristotle held that behavior is controlled by
associations learned between concepts. Subsequent philosophers and psychologists
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refined the idea. Brown [1820] contributed the notion of labeling links between con-
cepts with semantic information. Selz [1926] suggested that paths between nodes
across a network could be used for reasoning. In addition to inventing predicate logic,
in the 1890s Peirce rediscovered the semantic nets of the Shastric Sanskrit grammari-
ans [Roberts, 1973]. These ideas were taken up by Quillian [1968] who applied se-
mantic networks to automatic language translation. The purpose was to introduce
language understanding into translation to cope with examples like the previously
cited “out of sight out of mind”.

Semantic nets had intuitive appeal in that they represented knowledge pictorially by
graphs. The nodes of a semantic net represent objects, entities or concepts. Directed
links represent binary (and unary) relations between nodes. Binary constraint net-
works are one example. Storing related concepts close together is a powerful means
of directing search. The emphasis of the model is on the large-scale organization of
knowledge rather than the contents [Findler, 1979]. Semantic nets have a counterpart
in databases in the network representation. A more recent manifestation of semantic
nets is entity relationship diagrams, which is used in the design of databases [Chen,
1976; 1977].

Limitations of the use of early versions of semantic nets were quickly apparent. There
was no information that guided the search for what you wanted to find. Simple se-
mantic nets treat general and specific terms on the same level, so one cannot draw
distinctions between quantifications; e.g., between one object, all objects and no such
object. In the late 1860s, Mills showed that the use of a single concept to refer to
multiple occurrences leads to ambiguity. Some arcs were regarded as transitive and
others not. McDermott [1976] pointed out that the taxonomic, transitive is-a link was
used for both element and subset relationships. Brachmann [1983] examined the
taxonomic, transitive, is-a link found in most semantic networks. He concluded that a
single representational link was used to represent a variety of relations in confusing
and ambiguous ways.

1.9 Post-Impressionism

... both a development from Impressionism and a reaction against
it. Post-Impressionism was based on scientific principles and re-
sulted in highly formalized compositions.

[Chilvers and Osborne, 1988]

Minsky was one of the foremost critics of the use of logic for representing common-
sense knowledge. A widely disseminated preprint [Minsky, 1975] had an appendix
entitled Criticism of the Logistic Approach (the appendix did not appear in the pub-
lished version):

Because logicians are not concerned with systems that will later be
enlarged, they can design axioms that permit only the conclusions
they want. In the development of intelligence, the situation is differ-
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ent. One has to learn which features of situations are important,
and which kinds of deductions are not to be regarded seriously.

Some of the confusion with semantic nets was dispelled with frames [Minsky, 1975].
Frames were intended for the large-scale organization of knowledge and were origi-
nally introduced for scene representation in computer vision. They adopted a rather
more structured approach to collecting facts about a particular object and event types
and arranging the types into a taxonomic hierarchy analogous to a biological hierar-
chy. In frames, intransitive links were encapsulated in nodes. The fields (slots) of the
frame are filled with the values of various default attributes associated with the ob-
ject. Contrary to some opinion, frames are related to the frame problem of situation
calculus. In the frame representation, only certain attributes need change their value
in response to actions. Procedural knowledge on how the attributes are (or are not)
updated as a result of actions are included in the frame. The restriction of links to is-a
relations relates a class to a more general one. This produces a partial order on classes
that organizes them into a hierarchy of specialization. Properties associated with
general types can be inherited by more specialized ones. By adding a second (non-
transitive) instance relation, the frame representation can be extended to allow the
distinction to be made between general and specific. The instance relations allow
default values to be inherited from generic class frames and the determination of all
instances of a given class.

Minsky supervised a series of Ph.D. projects, known as microworlds, which used
frames to represent limited domains of knowledge. Slagle’s [1963] SAINT system
solved closed form integration problems typical of college calculus courses. Evans’
[1968] ANALOGY system solved geometric analogy problems that appear in IQ
tests. Raphael’s [1968] SIR (Semantic Information Retrieval) was able to accept
statements in a restricted subset of English and answer questions on them. Bobrow’s
[1967] STUDENT system solved algebra story problems. The most famous mi-
croworld was the Blocks World. It consisted of a set of children’s building blocks
stacked on a tabletop. A task in this world is to rearrange the stack in a certain way
using a robot arm than can only pick up one block at a time.

The Blocks World was the setting for many applications: Huffman’s [1971] vision
system; Waltz’s constraint propagation vision system; the learning system of Winston
[1975]; the natural language understanding program of Winograd and the planner of
Fahlman [1974]. The use of constraint solving in Waltz’s [1972] extension of Huff-
man’s [1971] and Clowes [1971] computer vision systems was claimed to demon-
strate that combinatorial explosion can be controlled. The system attempts to recog-
nize objects in scenes from contours. Waltz’s [1972] extension incorporated shadows
to the scene analysis program. This contributed such an enormous increase in com-
plexity to the problem that simple backtracking search became intractable.

Widely criticized as a trivial combination of semantic nets and object-oriented pro-
gramming [Dahl et al., 1970], Minksy’s frames paper served to place knowledge
representation as a central issue for AI. Briggs [1985] suggests that knowledge repre-
sentation research began with ancient Indian analysis of Shastric Sanskrit in the first
millennium BC. Shastric Sanskrit grammatical theory proposed not only a formal
syntax and vocabulary but also analysis of its semantics using semantic nets. In con-
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trast, the linguist Schank [Schank and Abelson, 1977] claimed: There is no such thing
as syntax. Schank and his students built a series of natural language understanding
programs [Schank and Abelson, 1977; Schank and Riesbeck, 1981; Dyer, 1983]
which represented stereotypical situations [Cullingford, 1981] describing human
memory [Rieger, 1976; Kolodner, 1983], plans and goals [Wilensky, 1983]. LUNAR
[Woods, 1972] allowed geologists to ask English language questions about rock sam-
ples brought back from the Apollo Moon Mission.

Although the original frame representation provided only single inheritance, later
extensions allowed more than one superclass (this is called multiple and mixed in-
heritance). While multiple inheritance allows the user to gain further expressiveness,
it brings a new range of problems. The inheritance network effectively becomes an
arbitrary directed graph. Retrieving a value from a slot then involves search. Frames
do not incorporate any distinction between ‘essential’ properties (those an individual
must possess to be considered an instance of a class) and accidental properties (those
that all instances of the class just happen to possess). The psychological intuition
behind this is that conceptual encoding in the human brain is not concerned with
defining strictly exhaustive properties of exemplars of some category. Categorization
is concerned with the salient properties that are typical of the class. Brachmann
[1985] pointed out that this makes it impossible to express universal truths, or even
construct composite ideas out of simpler conceptual units in any reliable way.

A long-term research effort that attempted to build a system with encyclopedic
knowledge using the frame representation is Cyc (from encyclopedia) [Lenat and
Guha, 1990]. Cyc was a privately funded project at MCC that was part of the US
response to the Japanese FGCS. Despite ten years effort and hundreds of millions of
dollars in funding, Cyc failed to find large-scale application. The failure to choose a
sufficiently expressive common representation language was admitted to be an over-
sight near the end of the project [Lenat, 1995]:

Another point is that a standard sort of frame-and-slot language
proved to be awkward in various contexts: ... Such experiences
caused us to move toward a more expressive language, namely
first-order predicate calculus with a series of second order exten-
sions ...

Two years after Minsky’s defining paper, Hayes [1977] gave a formal interpretation
of what frames were about. Hayes argues that a representational language must have
a semantic theory. For the most part, he found that frame representation is just a new
syntax for a subset of first-order logic. While subsequently hotly disputed, Hayes’
conclusion is that, except for reflexive reasoning, frames had not achieved much.
Reflexive reasoning is one in which a reasoning agent can reason about its own rea-
soning process.

While generally not as expressive as first-order predicate calculus, semantic nets and
frames do carry extra indexing information that makes many common types of infer-
ence more efficient. In defense of logic, Stickel [1982, 1986] and Walther [1984] give
examples of how similar indexing can be done in implementations of systems that
carry out inferences on predicate calculus expressions. One benefit of the frame or-
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ganization of knowledge is economy of storage. Hierarchical organization gives im-
provement in system understanding and ease of maintenance. A feature of frames not
shared by logic is object-identity, the ability to distinguish between two instances of a
class with the same properties.

On the general endeavor of knowledge representation, Dreyfus [1988], an MIT phi-
losopher, notes:

Indeed, philosophers from Socrates through Leibniz to early Witt-
genstein carried on serious epistemological research in this area
for two thousand years without notable success.

With a slight exaggeration, Plato’s theory of forms can be identified with frames:
forms represent ideal perfect classes of object; earthly instances of forms are imper-
fect copies.

1.10 Precisionism

... in which urban and industrial subjects were depicted with a
smooth precise technique.

[Chilvers and Osborne, 1988]

In the Precisionist Movement there was pressure from AI’s principal funding agency,
DARPA (the United States Defense Advanced Research Projects Agency), to make
research pay off. DARPA’s lead was followed by other governments’ funding bodies
that implicitly and explicitly directed AI to tackle real world, engineering problems
instead of toy or mathematical problems. Feigenbaum and others at Stanford began
the Heuristic Programming Project (HPP) to investigate the extent to which mi-
croworld technology could be applied to real world problems.

The first expert system, Dendral, was initiated in 1965 at Stanford University and
grew in power throughout the 1970s [Lindsay et al., 1980]. Given data from mass
spectroscopy, the system attempted to determine the structural formula for chemical
molecules. The improvement in performance was brought about by replacing first
level structural rules by second level (larger grain and possibly incomplete) rules
elicited from experts. Dendral was followed by other successful expert systems in the
1970s that epitomized the ‘Precisionist Movement’. Mycin [Shortliffe et al., 1973]
gives advice on treating blood infections. Rules were acquired from extensive inter-
viewing of experts who acquired their knowledge from cases. The rules had to reflect
the uncertainty associated with the medical knowledge. Another probabilistic rea-
soning system Prospector [Duda et al., 1979] was a consultation system for helping
geologists in mineral exploration. It generated enormous publicity by recommending
exploratory drilling at a geological site that proved to contain a large molybdenum
deposit. The first commercial expert system Xcon (originally called R1) [McDermott,
1981], is an advice system for configuring the DEC’s VAX range of computers. By
1986, it was estimated to be saving the company $40 million a year.
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The difficulty in building expert systems led to proprietary pluralist, high-level pro-
gramming environments such as Loops, Kee, and Art. These environments provide
the user with a myriad of tools that had been found useful in building expert systems.
Such systems are criticized because they provide no guidance on how to compose the
tools. This was claimed to encourage ad-hoc programming styles in which little at-
tention is paid to structure. Clancey [1983] analyzed Mycin’s rules and found it use-
ful to separate base-level medical knowledge from metalevel diagnostic strategy.
MetaX can be understood as “X about X.” (This understanding does not apply to
metastable states.) So for instance, metaknowledge is knowledge about knowledge,
metareasoning is reasoning about reasoning. This separation followed a previous
trend in program design. Wirth [1976], coined the adage

program = algorithm + datastructure

 in the title of a book on programming. Kowalski [1979] continued the reductionist
view with

algorithm = logic + control

in particular regard to the programming language Prolog. Using the separation of
knowledge, Meta-Dendral [Buchanan and Mitchell, 1978] was able to learn rules that
explain mass spectroscopy data used by the expert system Dendral [Buchanan et al.,
1971].

A metareasoning facility allows reflection on the reasoning process that Hayes
claimed was the only distinctive attribute of frames. The universal deductive system
noted earlier is a meta-interpreter for a deductive system. More specifically, there are
two theories: one, called the object theory, and another, the metatheory that concerns
the object theory. Metaknowledge can be strategic and tactical, knowledge about how
to use the base knowledge. An example is the metarule, always try this rule before
any other. The base level knowledge could be from a conventional database or a set
of production rules so that a distinction of degree arises. The term expert system is
generally reserved for systems with many more rules than facts. Deductive databases
have many more facts than rules. The term knowledge-based system was coined to
encompass both extremes and dissociate the movement from the hyperbole that had
become associated with AI. The distinction between a knowledgebase and a database
is that in the former not all knowledge is represented explicitly. The emotive term
knowledge engineering typifies the Movement. Feigenbaum [1980] defined it as the
reduction of a large body of experience to a precise body of rules and facts.

The main difference between McCarthy’s Advice Taker [1958] and Newell et al.’s
Logic Theorist [1956] was the way in which heuristics were embodied. McCarthy
wanted to describe the process of reasoning with sentences in a formally defined
metalanguage, predicate calculus. For McCarthy the metalanguage and object lan-
guage coincide. Hayes [1973] introduced a metalanguage for coding rules of infer-
ence and for expressing constraints on the application of those rules. He showed that
by slightly varying the constraints it was possible to describe markedly different
reasoning methods. He proposed a system called Golux based on this language, but it
was never implemented.
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According to Jackson [1986], successful expert systems are generally those with
restricted domains of expertise. Here, there is a substantial body of empirical knowl-
edge connecting situations to actions (which naturally lend themselves to production
systems) and where deeper representations of knowledge such as spatial, temporal or
causal can be neglected. With such systems it is known in advance exactly what ex-
ternal parameters are required to solve the problem (i.e., the items the system is ex-
pected to configure). The expertise of such a system is in making local decisions that
do not violate global constraints and global decisions that allow local solutions (step-
wise refinement).

By 1988, DEC’s AI group had deployed 40 expert systems with more on the way.
DuPont had 100 in use and 500 in development, saving an estimated $10 million a
year. Nearly every major US corporation had its own knowledge engineering group
and was either using or investigating expert system technology. A high point of the
‘Precisionist Movement’ came in 1981 with Japanese Fifth Generation National Ini-
tiative to build machines that give hardware support to knowledge-based systems
[Moto-oka, 1982]. So as not to be left behind, other governments initiated national
and multinational (EC) research programs of their own. In the US, the Microelec-
tronics and Computer Technology Corporation (MCC) was formed as a research
consortium. In the UK, the Alvey Report reinstated some knowledge-based systems
funding that had been cut as a result of the Lighthill report. In Europe, Esprit sup-
ported industrial and academic collaborations. Industry sales of knowledge-based
systems related components went from a $3 million in 1980 to $2 billion in 1988.
Sales included software tools to build expert systems, specialized AI workstations
based on Lisp and industrial robotic vision systems.

One of the difficulties of expert systems is eliciting knowledge from experts. Domain
experts were visibly able to perform complex diagnostic tasks but found it difficult to
explain how they had done so. With early systems, Dendral and Mycin, knowledge
engineers conducted long interviews with domain experts to extract rules but the
results often contained omissions and inconsistencies that had to be laboriously de-
bugged. Quinlan [1982] observed:

While the typical rate of knowledge elucidation by this method is a
few rules per man-day, an expert system for a complex task may re-
quire hundreds or even thousands of rules. It is obvious that the
interview approach cannot keep pace with the burgeoning demand
for expert systems.

Feigenbaum [1977] had written:

… the acquisition of domain knowledge is the bottleneck problem in
the building of applications-oriented intelligent agents.

The problem has since become known as the Feigenbaum bottleneck.
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1.11 New Realism

… used to cover a reaction from Abstract Expressionism in favor of
a revival of naturalistic figuration embued with a spirit of objectiv-
ity.

[Chilvers and Osborne, 1988]

A new realism was heralded in the 1980s by a report of a team headed by Rumelhart
and McClelland submitted to DARPA and its civilian counterpart the National Sci-
ence Foundation. The report argued that parallel-distributed programming (PDP), a
new name for artificial neural nets, had been seriously neglected for at least a decade.
They advocated a switch of resources into the PDP arena. In 1985, a special issue of
Cognitive Science was devoted to the subject of connectionism, another new name for
the field. (When an area of endeavor has been disparaged, an important technique for
erasing that memory and suggesting that there is something new is to give it a new
name. This technique had been successfully deployed with knowledge-based sys-
tems.)

There were several reasons for the neural net renaissance, not the least of which was
that it presented an opportunity for the US to regain the leading edge of computer
science that had been seized by the Japanese Fifth Generation. The theoretical limita-
tions identified by Minsky and Papert [1969] applied only to a single layer of neu-
rons. In the intervening period, learning algorithms for multilayer systems such as the
back propagation rule or generalized delta rule [Rumelhart, Hinton and Williams,
1986] emerged. (Ironically, back-propagation was discovered in the earlier movement
[Bryson and Ho, 1969].) Hopfield’s work [1982] lent rigor to neural nets by relating
them to lattice statistical thermodynamics, at the time a fashionable area of physics.
Lastly, demands for greater power appeared to expose the sequential limitations of
von Neumann computer architectures.

An apparently convincing proof of concept was provided by the Nettalk system [Se-
jnowski and Rosenberg, 1987]. Nettalk is a text-to-speech translator that takes 10
hours to “learn to speak.” The transition of Nettalk’s childlike babbling to slightly
alien but recognizable pronunciation has been described as eerily impressive. By
contrast, a (symbolic) rule based system for the same task, DECtalk, required a 100-
person years development effort.

By the mid-1980s, the connectionist renaissance was well under way. This
prompted Minsky and Papert [1969, 1987] to issue a revised edition of their book. In
the new prologue they state:

Some readers may be shocked to hear it said that little of signifi-
cance has happened in this field [neural nets].

Talk of a sixth generation of connectionism was stifled in Japan, so as not to com-
promise the much heralded, but late arriving, Fifth Generation.

The euphoria of the New Realism was short lived. Despite some impressive exem-
plars, large neural networks simulated on von Neumann hardware are slow to learn
and tend to converge to metastable states. On training data Nettalk’s accuracy goes
down to 78%, a level that is intelligible but worse than commercially available pro-
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grams. Other techniques such as hidden Markov models require less development
time but perform just as well. Connectionist systems are unable to explain their rea-
soning and show little signs of common sense. An anecdotal example is a military
application of tank recognition. A neural net had been trained to recognize tanks in a
landscape. Testing with non-training data the system failed to recognize tanks relia-
bly. It turned out that all the training photographs with tanks in the scene were taken
on sunny days and those without tanks were taken on dull days. The network had
learnt to reliably distinguish sunny days from dull days.

1.12 Baroque

The emphasis is on balance, through the harmony of parts in sub-
ordination to the whole.

[Chilvers and Osborne, 1988]

Brachmann [1985] claims that the use of frames for common-sense reasoning is
fraught with difficulties. The formalism suggested by Minsky was widely criticized
as, at best, a trivial extension of the techniques of object-oriented programming, such
as inheritance and default values [Dahl et al., 1970; Birtwistle et al., 1973]. General
problem solving systems like GPS [Newell and Simon, 1963] had faired no better
than machine translation in naive physics. As the programs were expanded to handle
more classes of problems, they performed less satisfactorily on any single one. Min-
sky [1975] remarked:

Just constructing a knowledgebase is a major intellectual problem
... We still know far too little about the contents and structure of
commonsense knowledge. A “minimal” commonsense system must
“know” something about cause-effect, time, purpose, locality, pro-
cess and types of knowledge ... We need a serious epistemological
research effort in this area.

Expert systems are now so established in industry that they are rarely considered as
AI. A general disillusionment with expert systems and AI grew because of the inabil-
ity to capture naive physics.

That human intelligence is the result of a number of coordinating, possibly compet-
ing, intelligences grew out the work of the Swiss psychologist Piaget. Piaget’s obser-
vations of his own children suggested they go through distinct stages of intellectual
development. According to Papert:

... children give us a window into the ways the mind really works
because they are open ... I think we understand ourselves best by
looking at children.

Piaget influenced Papert in the development of a programming language (Logo) for
children. One of Piaget’s well known experiments [Flavell, 1963] involves two
drinking glasses, one tall and thin the other short and fat. A child’s choice of the tall
glass when the same volume of lemonade is contained in each is attributed to the
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intuitive mentality that develops in early childhood. In the second, kinesthetic stage,
children learn by manipulating objects. In the final stage what they learn is dominated
by language and becomes more abstract. The American psychologist Bruner devel-
oped Piaget’s thesis to the point where these mentalities behave as semi-independent
processes in the brain that persist through adult life. They exist concurrently and can
cooperate or be in conflict.

A first attempt to coordinate multiple expert systems emerged in the 1970s, when
DARPA launched a national effort to develop a natural speech understanding system.
The result of this effort was Hearsay, a program that met its limited goals after five
years. It was developed as a natural language interface to a literature database. Its task
was to answer spoken queries about documents and to retrieve documents from a
collection of abstracts of artificial intelligence publications. Hearsay gave a major
push to the technology of speech understanding and additionally led to new sources
of inspiration for AI: sociology and economics. Hearsay [Erman, 1976] comprised
several knowledge sources (acoustic, phonetic, phonological, lexical, syntactic and
pragmatic) and featured a Blackboard System for communication between them. In a
blackboard system, a set of processes or agents, typically called knowledge sources
(abbreviated KSs) share a common database. Each KS is an expert in a particular area
and they cooperate, communicating with each other via the database. The blackboard
metaphor refers to problem solving by a group of academics gathered around a
blackboard to collectively solve a problem. Writing an idea or fact on the blackboard
by one specialist can act as a trigger for another expert to contribute another part of
the solution.

An early reference to the blackboard metaphor was Newell [1962]. The short-term
memory of the Impressionist Movement can be viewed as a bulletin board that pro-
vides a channel of communication between rules. If autonomous agents use produc-
tion rules, the workspace becomes a means of synchronization and communication.
Newell pointed out that, in conventional single agent problem solving paradigms, the
agent is wandering over a goal net much as an explorer may wander over the country-
side, having a single context and taking it with them wherever they go. The single
agent view led AI researchers to concentrate on search or reasoning with a single
locus of control. As noted by Newell, the blackboard concept is reminiscent of Sel-
fridge’s (neural network) Pandemonium [Selfridge, 1955] where a set of demons
independently look at a situation and react in proportion to what they see that fits
their natures. Kilmer, McCulloch, and Blum [1969] offered a network in which each
node was itself a neural network. From its own input sample, each network forms
initial estimates of the likelihood of a finite set of modes. Then networks communi-
cate, back and forth, with other networks to obtain a consensus that is most appropri-
ate. The notion of organizing knowledge into unitary wholes was a theme of Kant’s
Critique of Pure Reason [1787], which was revived in the 20th century by Barlett
[1932].

Hewitt [1977] developed the idea of control as a pattern of communication (message
passing) amongst a collection of computational agents. Hewitt [1985] uses the term
open system to describe a large collection of services provided by autonomous agents.
Agents use each other without central coordination, trust, or complete knowledge. He
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argues that networks of interconnected and interdependent computers are qualita-
tively different from the self-contained computers of the past. The biologist von Ber-
talanffy expressed a similar sentiment in considering living organisms. In living sys-
tems, the whole is always more complex than the union of the parts. Von Bertalanffy
drew attention to the distinction between systems that are open to their environment
and those that are closed. He defined an open system [1940] as one having to import
and export material from its environment.

In the same period after the war that Post published his results on deductive systems,
von Bertalanffy proposed a holist view of biology: biology could not be reduced to
chemistry. Biological evolution has developed one solution to the management of
complex dynamic systems. In living things there is a hierarchy of structures: mole-
cules, organelles (entities making up a cell), cells, organs, and organisms. By dis-
secting an organism into its representative parts, the form and function of each organ
and chemical components can be discovered. In this reductionist process, the living
entity vanishes in the search for elements. Reproduction is not within the power of
any single molecule or organelle by itself. The reductionist philosophy of Descartes
tries to explain social science with psychology, psychology with neurophysiology,
neurophysiology with chemistry and chemistry with physics. Longuet-Higgins et al.
[1972] satirically carries the argument further, reducing history to economics and
economics to sociology.

Biological systems maintain control by confining processes and their data in self-
contained cells. These cells act on each other by sending “messages” carried by
chemical messengers. The cell membrane protects its data, DNA, from inappropriate
processes. General Systems Theory is a logico-mathematical study whose objective is
the formulation and derivation of those principles that are applicable to general sys-
tems, not only biological ones. The name is due to von Bertalanffy [1956]. Although
von Bertalanffy introduced the terminology verbally in the 1930s, the first written
presentations only appeared after World War II. General Systems Theory is founded
on two pairs of ideas: hierarchy and emergence; communication and control. The
theory challenges the use of reductionist philosophy in the theory of organizations
and biology.

Organisms, von Bertalanffy pointed out, are unlike the closed systems usually studied
in physics in which unchanging components settle to a state of equilibrium. Organ-
isms can reach steady states that depend upon continuous exchanges with the envi-
ronment. Whereas closed systems evolve towards increasing disorder (higher en-
tropy), open systems may take up organized, yet improbable, steady states. Mainte-
nance of a hierarchy, such as molecule to organism, entails a set of processes in
which there is communication of information for purposes of regulation and control.

The blackboard technique is a form of opportunistic search. Partial information dis-
covered by one knowledge base can be of sufficient use to guide another so that the
two may solve a problem faster than by combining the knowledge. Hewitt and Korn-
field [1980] have called this accelerator effect combinatorial implosion. The black-
board technique has the same problem as expert systems: it does not scale. If there is
only one blackboard it becomes a severe bottleneck [Hewitt and Liebermann, 1984].
Cooperative Knowledge Based Systems (CKBS) exploit other forms of sociological
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cooperation. Axelrod [1984] explores the evolution of cooperation. The idea that
competition through market forces is a more efficient search strategy than centralized
control was an economic dogma of the same (Thatcher) decade.

1.13 Pre-Raphaelite Brotherhood

Their desire for fidelity to nature was expressed through detailed
observation of flora etc.

[Chilvers and Osborne, 1988]

From his work on robotics with Papert, Minsky developed a theory of agent based
intelligence that he laid out in the Society of Mind [1986]. Similar sentiments are to
be found in Arbib’s conception of the brain’s information processing as a collection
of concurrent “schemas” [Arbib, 1988]. Brooks [1986] suggests that the idea that
intelligence can be split vertically into tasks such as search and knowledge represen-
tation is misguided. He claims a more suitable split is horizontal and based on func-
tion. The argument is that biological control is associated with the imposition of con-
straints and requires consideration of at least two hierarchical levels. At a given level,
it is often possible to describe the dynamical properties of the system such as the
possible transitions or search paths. Any description of control entails an upper level
imposing constraints on the lower level. For example, the cell as a whole constrains
the physicochemical possibilities available to DNA that makes it the bearer of infor-
mation. The upper level is the source of an alternative (simpler) description of the
lower level by specific functions that are emergent (epiphenomena) due to the impo-
sition of constraints. Some otherwise undistinguished molecules in a cell are con-
strained to bear the function of repressor or activator. These functions are not avail-
able in the chemical properties of the molecules but are the result of hierarchical
control.

According to Brooks [1991], AI should proceed as evolution does, beginning by
constructing primitive autonomous artificial insects and progressing to more sophisti-
cated mechanisms. Turing’s universal computing machine suggested to von Neumann
[1966] the idea of a universal construction machine: a machine which, given a suffi-
ciently rich environment of components and furnished with suitable instructions,
could replicate itself. While at Cambridge, John Conway invented an autonomous
computer game, the Game of Life [Gardner, 1970]. A deterministic set of rules served
as the physical laws and the microprocessor clock determined the time-scale. De-
signed as cellular automata, the screen was divided into cells whose states were de-
termined by the states of their neighbors. The rules determine what happens when
neighboring cells are alive or dead thereby triggering a cascade of changes through-
out the system. One interesting discovery was a glider, a cell that moved across the
screen. Conway proved that the Game of Life was not predictable; it was undecidable
if the patterns were endlessly varying or repeating. Though it had a small number of
deterministic rules, it had the capacity to generate unlimited complexity.

The aptly named computer virus is a recent manifestation of artificial life. Like its
biological counterpart, a computer virus is incapable of replication without being
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incorporated in a host program [Ferbrache, 1992]. The code of the computer virus can
be compared with the codon or nucleotide structure of DNA of a biological virus. The
virus subverts the host program to infect other programs directly. Infection spreads
through networks or files on discs. A virus arranges for its code to be executed by
subverting machine or operating system initialization, termination, or demon code.
Consequently, computer viruses are machine and operating system specific. A virus’s
behavior can be somewhat benign, only consuming space, or it can wreak havoc.
Some computer viruses, such as the one that disrupted the Internet (the DARPA
communication protocol that links defense, research, and educational sites in the US),
operate from a predetermined, declarative instruction set. The Internet virus vividly
demonstrated the vulnerability of computer networks to sabotage.

Random mutations of computer viruses caused by data corruption have been recorded
so there is a possibility for evolution. However, computer systems try to prevent
evolutionary behavior with error detecting and correcting codes. Genetic algorithms
are a deliberate attempt to use evolution as a method of search. A caution against the
speed of genetic search is expressed by McCulloch et al. [1962]:

If you want a sweetheart in the spring, don’t get an amoeba and
wait for it to evolve.

1.14 Renaissance

Term meaning ‘rebirth’ applied to an intellectual and artistic
movement.

[Chilvers and Osborne, 1988]

Growing commercialization of the Internet brought about a renaissance in AI with the
distillation of the concept of software agent. According to Kay [1984]:

The idea of an agent originated with John McCarthy in the mid-
1950s, and the term was coined by Oliver G. Selfridge a few years
later, when they were both at the Massachusetts Institute of Tech-
nology. They had in view a system that, when given a goal, could
carry out the details of the appropriate computer operations and
could ask for and receive advice, offered in human terms, when it
was stuck. An agent would be a ‘soft robot’ living and doing its
business within the computer’s world.

The word agent derives from the Latin verb agere: to drive, lead, act, or do. The
philosopher Dennett (1987) describes three ways of describing the behavior of sys-
tems that cause something to be done: physical, based on physical characteristics and
laws; design, based on its functions; and intentional, based on the assumption of
rational agent. Doyle [1983] proposed the design of rational agents as the core of AI.
Horvitz et al. [1988] proposed the maximization of utility, in the sense of von Neu-
mann and Morgenstern [1944], as the interpretation of rationality.
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In The Nature of Explanation, Craik [1943] proposed a mental, deliberative, step
between the behaviorists’ stimulus and response. He argued that mental category such
as goals, beliefs and reasoning are bulk properties of intelligence and are just as sci-
entific as pressure and temperature used to describe gases, despite their being made of
molecules which possess neither. Bratman [1987] introduced mental states of belief,
desire and intention (BDI). Beliefs express an agent’s expectation of its environment.
Desire expresses preference over future states of the environment. Intentions are
partial plans of actions that an agent can perform which are expected to achieve de-
sired states. Craik proposed that intelligent systems execute a cycle: a stimulus is
transformed into an internal representation; the representation is integrated with the
existing mental representation and this is used to effect an action. This model was
used as the basis of the influential robotics project, Shakey at SRI [Nilsson, 1984].
Shakey added a planning module to produce the sense-model-plan-act (SMPA) ar-
chitecture. Shakey’s world model was based on propositional logic.

Following Wittgenstein [1953], Austin [1962] noted that natural language utterances
could be understood as actions that change the state of belief in the same way that
actions change physical state. Searle [1969] derived necessary and sufficient condi-
tions for the successful performance of speech acts, which distinguished five types of
speech acts. Cohen and Perrault [1979] utilized this work on linguistic philosophy
into an AI planning problem. Cohen and Leveque [1995] developed a theory in which
rational agents perform speech acts in furtherance of their desires.

The Renaissance Movement is characterized by situatedness, which aims to build
autonomous intelligent systems, embedded in real environments. This is exemplified
by the SOAR agent architecture [Laird et al., 1987, Newell, 1990]. This can be seen as
related to the empiricist movement started by Francis Bacon’s Novum Organum. This
philosophical movement is characterized by the philosopher John Locke’s dictum:

Nothing is in the understanding, which is not first in the senses.

The theory was taken to extreme by Carnap [1928] and the Vienna Circle who intro-
duced logical positivism. This doctrine holds that all knowledge can be characterized
by logical theories ultimately connected to observation sentences that correspond to
sensory input. Logical positivism held that all meaningful statements could be veri-
fied or falsified either by analyzing the meaning of the words or by experiment. Pop-
per [1972] refuted this claim, with an argument which essentially comes from
Hume’s A Treatise of Human Nature. Hume proposed that general rules cannot be
proved but are acquired by exposure to repeated associations between their elements
– the principle of induction.

1.15 Hindsight

Everything of importance has been said before by somebody who
did not discover it.

AN Whitehead (1861–1947)
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The factions of AI have been presented by an analogy with the movements of Fine
Art elaborating suggestions of Jackson [1986] and Maslov [1987]. Some may feel
this is pushing an amusing metaphor too far, but like Fine Art, AI has its fashions and
counterfashions, examples and counterexamples, claims and refutations. Papert now
claims his and Minsky’s attacks on connectionism have been misinterpreted. They
were not directed against neural nets but against universality; the idea that there is a
single mechanism that has universal application:

The desire for universality was fed also by the legacy of the scien-
tists, largely mathematicians, who created AI, and it was nurtured
by the most mundane material circumstances of funding.

[Papert, 1988]
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Chapter 9

Partial Evaluation

There are three rules for writing a novel. Unfortunately, no one
knows what they are.

Somerset Maugham

The use of meta-interpreters offers a principled way to tailor a language to a
programmer’s needs. Adding another layer of meta-interpretation can produce any
additional information that is required during the computation or any additional
control over the computation. Sterling and Beer [1986] make a strong appeal for
structuring programs into multiple layers of meta-interpreters for expert system
construction. Each layer of interpretation has its own clear semantics and the
boundary between the layers is clearly defined. This is unlike the confusion that
occurs if extensive use is made of reflective constructs within languages to move
between conceptual layers of meta-interpreters.

To add k extra behaviors to an actor, another actor can be constructed in which there
is a layer of meta-interpreters each adding one behavior. If the meta-interpreters
interpret using the actors actor1, actor2,…, actork, the top level actor will be:

:- actor1(actor2(…actork(Actor)…))

Note that at this level, only the outer layer, actor1, is represented by an explicit
actor. The others are represented by messages at the object-level and the code for
them may similarly have to be represented by separate messages

:- actor1(actor2(…actork(Actor,P)…),P2)

where Pi is the object-level representation of the behavior for the i-th meta-interpreter
in the layer of meta-interpreters and P the behavior for Actor. A meta-interpreter may
also take in its own information, such as a control directive and return its own output,
such as trace information. If each of the meta-interpreters has its own input and
output the top-level actor will be:

:- actor1(actor2(…actork(Actor,Ik,Ok,PG)…),I1,O1,P2)
The drawback to this method of program structuring is the overhead of meta-
interpretation. The literature has tended to suggest that an overhead of an order of
magnitude for each layer of meta-interpretation can be expected. Van Harmelen
[1991] gives some analysis that suggests this is a considerable underestimate.
Particularly in bilingual systems where object-level concepts are not represented
directly by their equivalent meta-level concepts, there is a great amount of
bookkeeping and meta-level inference required to make one object-level behavior.
Clearly the multiplication of the overhead caused by one meta-interpreter interpreting
another rules out as impractical the use of the method of deploying programs as
layers of meta-interpreters. A way of overcoming the problem is to use methods of
program transformation [Partsch and Steinbruggen, 1983]. This changes the initial
layered program into one which is more efficient at the cost of lacking the structure
of the initial one, but which has the same semantics in terms of observable behavior.
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Ad hoc methods for composing meta-interpreters have been considered [Lakhotia and
Sterling, 1988] based on the idea that many meta-interpreters have similar structures
developing from the vanilla meta-interpreter. If two meta-interpreters both perform a
search of the proof tree, the separate searches can be fused into a single search. While
this method may be satisfactory for simple meta-interpreters, such as those discussed
by Safra [Safra and Shapiro, 1986], which essentially add information to the vanilla
meta-interpreter, it is less easy to find the correspondences necessary for composing
meta-interpreters when they are more complex and make alterations to the control. A
more systematic approach to reducing the overhead of meta-interpreters involves the
use of partial evaluation. Research into partial evaluation in logic programming,
started in the 1980s by Komorowski [1981], has been led principally by the
possibilities given by the combination of partial evaluation and meta-interpretation.
Important early work on partial evaluation of logic meta-interpreters was done by
Gallagher [1986] in Ireland and Takeuchi [1986] in Japan.

9.1 Partial Evaluation

Partial evaluation is a systematic form of program transformation based on the insight
that many programs contain considerable portions of code whose execution is
common to all runs of the program. Most commonly, there will be procedure calls
p(a1, …, an) where some of the ai are constants rather than variables. The reason for
this is that it may aid program clarity to have one general procedure p rather than
several specialized to the various arguments p may take. Any computation which is
dependent only on values which will in fact always be set to some constant on any
execution (termed static, whereas those dependent on the input to be provided at run-
time are termed dynamic) may in fact be carried out in advance. Another way of
thinking of it is as program specialization: programs may be generated for particular
purposes from a generalized template by setting some of the variables in that template
to constants and then applying partial evaluation.

The aim of partial evaluation is to separate out that part of the program that does not
depend on any input parameters and execute it, returning a revised form of the
program in which these non-variant parts are simplified. For example, assuming an
imperative style language, an assignment a:=b+c, where b and c are both static
variables, may be replaced by a:=n where n is the integer which is the sum of the
static values in b and c. Preprocessors (e.g. the C language) can do such simple
transformations. Similarly, if a and b are static, an expression of the form
if a>b then code1 else code2 endif may be replaced simply by code1 or code2
depending on how the comparison evaluates. Clearly the transformation here means
that the summing or testing of a and b takes place once and for all during partial
evaluation and is not re-evaluated unnecessarily each time the code is used, as it
would be if the original code were used.

In the examples given above, partial evaluation reduces the size of the code. In other
circumstances it can increase the size of the code. A single procedure or block of
code that may be entered several times during the evaluation of a program may be
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partially evaluated into a separate procedure or block of code specialized for each of
the circumstances in which it is entered. If we have a:=f(a1,…,an) and
b:=f(b1,…,bn) where a1 to ap are static and b1 to bq are static p,q<n, we can
replace them by a:=fa(ap+1,…,an) and b:=fb(bq+1,…,bn) where fa and fb are
separate new procedures representing f specialized to each of the different partially
static parameter lists. Thus, code for fa and fb, as well as code for any other
circumstances in which f might be called will replace the code for the procedure f.
Although in these examples consecutive arguments in the parameter list are static,
this is not a necessity since any subset of the parameter list could be static.

Ershov [1980], who did early research in partial evaluation of imperative programs,
called this mixed computation. His aim was that a program with static and dynamic
variables should be executed as far as possible, with assignments whose right-hand
sides were expressions containing dynamic variables being written to a residual
program and the variable on the left-hand side being treated as dynamic. Procedure
calls may be specialized as explained above. When dealing with conditional
expressions of the form if cond then code1 else code2 endif, where cond is
dynamic, mixed computation must partially evaluate both code1 and code2,
returning residual code1´ and code2´ respectively and returning as residual code for
the whole expression:

if cond then code1´ else code2´ endif
Note, the presence of loops and recursion can lead to partial evaluation as described
above generating a program of infinite size. For example, consider the simple
procedure:

procedure f(a,b)=
begin

if a then return b else return f(g(a),b+1) endif
end

specialized for the case b=1, but a dynamic. The call f(a,b) would specialize to f1(a)
where f1 is defined by:

procedure f1(a)=
begin

if a then return 1 else return f2(g(a)) endif
end

where f2 is f specialized to the case where its second argument is statically 2. Clearly
the code for f2 would require f3 and so on. The method to decide when to halt partial
evaluation to prevent this sort of infinite expansion of the code is one of the major
aspects of partial evaluation, referred to as the stop criterion [van Harmelen, 1991].
In fact finding the ideal solution is impossible, as it would require solving the halting
problem. For safety’s sake a partial evaluation algorithm must always err on the
cautious side. To avoid a partial evaluation that has the possibility of non-termination
it is necessary to have residual programs that could be further evaluated.

Partial evaluation became an identifiable field in computer science at a conference in
Denmark in 1987 that brought together many of those working in the area. Ershov
gave an opening speech [Ershov, 1988] to this conference that took a retrospective
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look at his own work. He noted his insight was a key idea whose importance had
been hidden by being scattered among various researchers many of whom were
unaware of each others’ work and thus used different terminology for what was in
fact the same concept. A similar point is made in an early paper on partial evaluation
by Beckman and colleagues [Beckman et al., 1976] who noted several even earlier
pieces of work that could be identified as partial evaluation.

Ershov’s own interest in partial evaluation stemmed from a desire to overcome the
technical limitations of Soviet computers by clever compiling techniques. The
detection of elements of computation that are not dependent on run-time information
by tracing through dependency links is known as constant propagation in the field of
compiling and when continued through into conditional branches [Wegman and
Zadeck, 1991] is very similar to the partial evaluation techniques discussed above.
Partial evaluation may be distinguished from clever compilation by the fact that it is
generally a source-to-source transformation rather than a translation to an object
code.

In lambda calculus and functional languages the technique known as currying (after
the logician Curry who used it extensively in combinator theory [Curry et al., 1958])
may be considered as a form of partial evaluation. Currying causes a function which
is conceptually of the form f(x,y) to be written as (f(x))(y) and similarly for functions
of more arguments. An application of f to a single argument m returns a function fm
which may be regarded as a specialization of f with its first argument fixed to m,
since fm(y) is equal to f(m,y) using the non-curried f for any y. Landin [1963] used
the term “partial evaluation” when noting that the reduction order of an applicative
expression could be altered so that a function may be evaluated as far as possible
before all of its arguments are fully evaluated. Holst and Gomard [1991] further
explore the connection between partial evaluation and lazy evaluation. Although
currying does not directly enable us to specialize the function f above by fixing its
second argument y so that it can be applied to a variety of xs, this can be done
indirectly. If we define C as the function C f y x = f x y (Turner’s [1979] C
combinator), then C f n will evaluate to the partial evaluation of f with its second
argument set to n.

The earliest work to fully consider partial evaluation in a practical environment was
that of Lombardi in the 1960s [Lombardi, 1967]. Lombardi preferred the term
incremental computation and was particularly concerned with the then new idea of
computers where the user had on-line access and could then partially supply input
data over time, rather than have all the input for a program presented at one time as in
a batch processor. His incremental computation was designed to formalize in a
programming language the concept of computations that could go as far as possible
with the data they had and then suspend until new data was available from the on-line
supplier. So in fact this first use of partial evaluation came in response to the first
reactive systems in computers. The affinity between reactive systems and partial
evaluation will be discussed later in this chapter.

Perhaps the most important early work on partial evaluation, particularly in the
context of its use in conjunction with meta-interpreters, was a short paper by
Futamura [1971]. In his opening speech to the first partial evaluation conference,
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Ershov singled out this paper as a classic example of a major concept buried in an
obscure journal. Ershov was responsible for promoting the name Futamura
projections [Ershov, 1982] for the idea of applying a partial evaluator to meta-
interpreters. Partial evaluation of an interpreter with respect to a program was called
the first Futamura projection. Partial evaluation of the partial evaluator with respect
to an interpreter was called the second Futamura projection. Partial evaluation of the
partial evaluator with respect to itself was called the third Futamura projection. These
will be discussed in detail in the next section.

9.2 Futamura Projections

The Futamura projections are best explained diagrammatically. A transformational
view of a program is a black box, Figure 9.2.1, into which input enters and from
which output exits:

In

Out

Prog

Fig 9.2.1 Simple black-box view of a program

This can be seen as an abstraction of a system in which a program runs on a machine.
Making the machine MachP explicit, the program is input to the machine, which
executes code written in the language P. In Figure 9.2.2, dotted lines indicate how the
view above is obtained by seeing the program and machine as a single system.

This is still an abstraction. In practice, a machine directly executes a different
language from the one a program is written in. Call the machine language M and the
machine that executes it MachM. A compiler is a program that takes a program
written in P as input and returns a program in M as output. For any input, the
compiled program running on MachM gives the same output as the program would if
directly run on MachP. Alternatively, an interpreter, which is a program written in M,
that takes two inputs, a program written in P and an input to that program and returns
the same output that would be given if the program were run on MachP. These two
approaches are shown in Figure 9.2.3. The dotted lines show a way of grouping the
machine and the interpreter or compiler together so that the programmer need not be
aware whether the program is interpreted or compiled.

The compiler itself could be broken down into a compilation program running on a
machine, but this step is not needed here. The advantage of using a compiler over
using an interpreter is that it makes explicit the intermediate stage of the compiled
program. Being made explicit, we can store it and re-use it when needed with other
inputs. Some of the work that the interpreter would have to do each time the program
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is run is done once and for all when the compiled version is produced. This is
illustrated in Figure 9.2.4.

In diagrammatic notation, partial evaluation may be defined as an equivalence
between two diagrams in Figure 9.2.5, where Peval is the partial evaluator program
(which again may be broken down into program and machine).

P ro g

M a c h P

In

O u t

Fig. 9.2.2 Program and machine as a single system

Prog

Compiler

MachM

Out

In In

Out

Prog

Interpreter

MachM

Fig. 9.2.3 Compilation and interpretation
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Prog

Compiler

Out

In

In´

Out´

Compiled
Prog

MachM

MachM

Fig. 9.2.4 Repeated runs of a compiled program

Prog

Peval

Prog
In k+1 In n

…In k+1 In nIn 1 In k… …

Out Out

In 1 In k…

MachP

MachP

Fig. 9.2.5 Definition of partial evaluation

This holds for any value of Prog, the n inputs In1 to Inn and the appropriate output
Out for Prog with the given inputs. The advantage is that the partially evaluated
program output from Peval may be saved and used again. In particular, if we set the
input In1 to Ink to static values a1 to ak, partial evaluation separates out an
intermediate form of the input program described as “Prog partially evaluated with
respect to In1=a1,… Ink=ak”, in which those elements of the computation specific to
these static values are executed once and for all. That is, the intermediate form is a
program written in P which requires n-k inputs and runs on MachP giving the same
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results if it has inputs bk+1, …, bn as Prog would have if it were run on MachP with
inputs a1, …, ak, bk+1, …, bn.

Peval

Prog
In nIn k+1

…

Out

…a1 ak

a1 ak

Prog partially
evaluated with

In 1= , … , In k=

MachP

Fig. 9.2.6 The use of partial evaluation

Kleene [1952] shows that such a partial function can always be found as his s-m-n
Theorem. It is assumed here that Peval is a P to P transformer and that we have a
MachP machine to run P programs on. We can always substitute a compiler or
interpreter and a MachM as above for MachP where necessary.

The first Futamura projection refers to partially evaluating an interpreter with respect
to a particular program. Note that in this case the partial evaluator must be an M to M
transformer. Otherwise this is just a special case of our more general partial
evaluation with n=2, Interpreter the program being partially evaluated and In1 being
set to the program being interpreted, Prog. The input to Prog is left dynamic. The
result of the partial evaluation is a program written in M which when given input In
runs on machine MachM and gives the same output as Prog gives when run on
MachP with input In. In other words, the combination of partial evaluator and
interpreter can be regarded as a compiler taking the program Prog written in P and
returning a program which has the same behavior but is written in M; Figure 9.2.7
illustrates this. On the left-hand side of the figure the original use of the interpreter to
run a P program on MachM is shown. The middle of the figure shows the use of
partial evaluation to give a version of the interpreter specialized to the particular P
program. The right hand side of the figure shows the use of a compiler, with the
dotted lines indicating the equivalence.
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MachM

Interpreter

Prog
In

Out

Peval

Interpreter
Prog

In In

Prog

Compiler

OutOut

Prog compiled
from P to M

Prog compiled
from P to M

MachM MachM

Fig. 9.2.7 The First Futamura Projection

The second Futamura projection recognizes that Peval itself may be regarded as a
program running on MachM, rather than a machine-program system as regarded up
till now. The second projection takes a program and some partial input and produces
a specialized program. When specializing an interpreter with respect to a program,
the two inputs are the interpreter and the program, and the output is the compiled
program (Figure 9.2.8).

MachM

Prog
InterpreterPeval

Prog compiled
from P to M

Fig. 9.2.8 Inputs of the Second Futamura Projection

The second Futamura projection is the use of the partial evaluator on itself to give a
version of the partial evaluator specialized with respect to a particular program P
running on M interpreter. In Figure 9.2.9, a distinction is made between the angled-
box Peval, which is the partial evaluator program itself and the rounded-box Peval,
which can be seen as a simplification standing for the combination of the program
Peval and the machine MachM.



288 Chapter 9

MachM

Prog
Peval

Peval

Interpreter

Prog compiled
from P to M

P to M compiler

Fig. 9.2.9 The Second Futamura Projection

The combination of partial evaluator applied to itself, enclosed within dotted lines
Figure 9.2.9, can be seen to take a P running on M interpreter and produce a program
which when applied to some program Prog, written in P, runs on MachM and
produces a version of Prog compiled from P to M. In other words, a partial evaluator
applied to itself gives a program, which takes a P to M interpreter and produces a P
to M compiler. Since this will work for any interpreter, P can be considered a
variable. The self-application of a partial evaluator may be considered a compiler
generator, generating an equivalent compiler given an interpreter.

The third Futamura projection takes the second projection one stage further,
expanding the program-machine Peval combination and then bringing in a further
Peval, so that partially evaluating a partial evaluator with respect to itself gives an
explicit compiler generator program. The complete system showing the three
Futamura projections is shown in Figure 9.2.10.

In order to build such a system, a partial evaluator is required which is sufficiently
powerful to be able to be applied to itself. The first such self-applicable partial
evaluator was constructed by Jones, Sestoft and Søndergaard [1985]. The problem
with self-applicable partial evaluators is that every aspect of the language that is used
to program the partial evaluator must also be capable of being effectively treated in
the partial evaluation. This is a particular difficulty in languages like Lisp and Prolog,
which add to their basic declarative framework a lot of non-declarative features
which require special handling during partial evaluation. One solution is to build a
self-applicable partial evaluator in the declarative subset of the full language and then
use a meta-interpreter to mix in the features of the full language.
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Prog

Interpreter

Prog compiled
from P to M

P to M compiler

MachM

Peval Peval

Peval

Compiler
Generator

In

Out

MachM

MachM

Fig. 9.2.10 The Third Futamura Projection

9.3 Supercompilation

The informal method of partial evaluation described above was formalized under the
name supercompilation by another Russian researcher, Turchin [1986]. Turchin’s
idea was that a program execution could be described as a graph of machine
configurations. An arc between nodes represents each possible step in a program’s
execution. In normal execution of a program, the configurations are ground and the
graph is simply a chain from the initial configuration to the final one. In a partial
execution, at any point where a program could transform to a number of states
depending on some dynamic information, child states for each possibility are created.
The arcs leading to these child states are labeled with the value required for the
dynamic data required for execution to follow that arc.

The above process is described as driving and would result in forming a decision tree.
If the decision tree were finite, a program could be reconstructed from it. The
program would amount to a partial evaluation of the original program specialized for
those values of data that were initially provided. In most cases, however, the decision
tree would be infinite. Supercompilation is described as a specialized form of driving
in which to prevent the attempted construction of infinite trees, loops in the graph are
allowed. In particular, an arc to an existing configuration may be constructed if a
configuration is found to be identical to another one in all but variable name. It can
also be a specialization of it, that is, identical to the other one in all but variable name
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or in having identified values at points that are variable in the other. This means that
arcs have to be labeled not only with the conditions necessary for execution to take a
particular arc, but also to which any variables in the destination configuration would
be bound if execution went down that route. To ensure against the construction of
infinite graphs, supercompilation also involves the concept of generalization.
Generalization occurs when two configurations are found to be “nearly identical”.
When this occurs, both are combined into one more general configuration with the
values where they differ replaced by a variable and the arcs leading into it having
bindings for this variable depending on which original configuration they led to.

For example, the graph in Figure 9.3.1 represents a version of insertion sort.

In

In   Out

Out:=[]

In   Out
X   Stack

Out
In=[]

In≠ []
X:=hd(In)
In:=tl( In)
Stack:=[]

In   Out
X   Stack

Out=[]

Stack=[]
In   Out
Stack

Out:=cons(X,Out)

Stack≠ []
Out:=cons(hd(Stack),Out)
Stack:=tl(Stack)

X≤hd(Out)

X>hd(Out)
Stack:=cons(hd(Out),Stack)
Out:=tl(Out)

Fig. 9.3.1 Graph of insertion sort

Here, the machine configurations are labeled with the sets of variables that represent
the dynamic data of those configurations. Each configuration would also have static
data representing the machine state, but this data can be discarded in the final
diagram, leaving something similar to a finite state machine. The conditions on the
arcs are labeled by comparison operators and equalities, the binding of variables by
the := operator. The initial configuration has the single variable In, the final
configuration the single variable Out. From this graph, a simple imperative program
could be reconstructed:

0: read(In); Out:=[]; goto 1;
1: if In=[] then goto 5

 else X:=hd(In); In:=tl(In); Stack:=[]; goto 2
 endif



Partial Evaluation 291

2: if Out=[] then goto 3
 else if X<hd(Out) then goto 3
 else Stack:=cons(hd(Out),Stack); Out:=tl(Out);

goto 2
 endif

3: Out:=cons(X,Out); goto 4;
4: if Stack=[] then goto 1

 else Out:=cons(hd(Stack),Out);
Stack:=tl(Stack); goto 4

 endif
5: write(Out)

However, it would also be possible to construct a GDC program, having a separate
actor for each state:

state0(In) :- state1(In,[]).

state1([],Out) :- state5(Out).
state1([X|In],Out) :- state2(In,Out,X,Stack).

state2(In,[],X,Stack) :- state3(In,Out,X,Stack).
state2(In,[H|Out],X,Stack) :- X<H

| state3(In,Out,X,Stack).
state2(In,[H|Out],X,Stack) :- X>H

| state2(In,Out,X,Stack).

state3(In,Out,X,Stack) :- state4(In,[X|Out],Stack).

state4(In,Out,[]) :- state1(In,Out).
state4(In,Out,[H|Stack]) :- state4(In,[H|Out],Stack).

state5(Out) :- write(Out).
Note that the bodies of the clauses all have just one actor, making the program what
is called a binary program. However, it can be shown that non-binary logic programs
can be transformed to binary logic programs [Demoen, 1992].

Turchin’s supercompilation can be explained as manipulations of the graphical
notation. Firstly, if the static information of two states is identical, they can be
merged into a single state, with changes in variable names on the incoming arcs as
necessary:

Figure 9.3.2 represents the case where the first state with dynamic information X, Y
and Z has already been produced, with appropriate outgoing arcs and the second state
with dynamic information A, B and C is being produced and so has no outgoing arcs.
The second state is identified as equivalent to the first in all its static information and
is merged with the first state, leaving the original outgoing arcs.
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⇒A   B   C

A:=e
B:=f

A:=g
B:=h

X   Y   Z

X:=a
Y:=b

X:=c
Y:=d X:=a

Y:=b

X   Y   Z

X:=c
Y:=d

X:=e
Y:=f
Z:=C

X:=g
Y:=h
Z:=C

Fig. 9.3.2 Graph transformation

Secondly, if the static information in one state is a specialization of another, it can be
merged with the other with the addition of arc labeling setting the variable value. For
example, suppose the middle state below represents a situation where the static
information is the same as the left state except that A and B are used for variables in
the place of X and Z and that where the left state has dynamic Y it has constant n.
Then the right state represents the merger:

⇒A    B

A:=e A:=f

X   Y   Z

X:=a
Y:=b

X:=c
Y:=d X:=a

Y:=b

X   Y   Z

X:=c
Y:=d

X:=e
Y:=n
Z:=B

X:=f
Y:=n
Z:=B

Fig. 9.3.3 Merging states

In the case where the more specialized state had been encountered first and outgoing
arcs from it explored, these would have to be replaced by developing the new
outgoing arcs for the more general state. So a decision has to be made: either to go
ahead with the merger and abandon this previous work as “overspecialization”, or
whether to keep it at the cost of a more complex graph.

A similar problem occurs when two states are found which differ only in one part of
their static information. Generalization refers to making this static information where
they differ dynamic. New outgoing arcs for the more general state must be developed.
Deciding when this generalization and merging of states is the preferable step to take
is a key issue in partial evaluation. Figure 9.3.4 represents a situation where two
states are found to represent identical static states except that one uses the variable
names X and Y, the other A and B and also that at one point in the static information
the first has information m while the second has n. The merger makes this static
information difference dynamic, representing it by a new variable K. No outgoing
arcs are given for the merged state, because new ones have to be developed to take
account of this generalization.
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⇒A    B

A:=e A:=f

X    Y

X:=a X:=b
X:=a
K:=m

X   K   Y

X:=b
K:=m

X:=e
K:=n

X:=f
K:=n

Fig. 9.3.4 Generalization

Specialization is the opposite process to the above merging of states in the graph. In
specialization, if an arc leading into a state assigns a value to a dynamic value in that
state, a separate node making that value static is created. Figure 9.3.5 shows the effect
of specializing the top state by instantiating its dynamic value V to static n. Arcs to
the descendant states of the original state are copied, with the assignment passed
down into these arcs:

V  X  Y  Z

X=a
U:=b

X=c
U:=d

U  V  Y  Z U  V  Y  Z

V:=n

X=c
U:=d

X=a
U:=b

X=a
U:=b
V:=n

X=c
U:=d
V:=n

X   Y   Z

⇒
V  X  Y  Z

U  V  Y  Z U  V  Y  Z

Fig. 9.3.5 Specialization

This specialization may be repeated by pushing it down to the next level. Specialized
versions of the descendant states are created in the same way. The specialization can
continue until all specializations are recognized as variants of previous states and
ended in loops, in the way described above. Figure 9.3.6 shows the result of pushing
specialization down one level.
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V  X  Y  Z X   Y   Z

U  V  Y  Z U  V  Y  Z U   Y   Z

X=a 
U:=b

X=c 
U:=d

X=a 
U:=b

X=c 
U:=d

V:=n

V:=n

U   Y   Z

V:=n

V:=n

Fig. 9.3.6 Repeated specialization

A further transformation is possible when specializing in this way. When a state is
specialized and the assignment making the specialization is passed to its outgoing
arcs, any arc with an assignment setting a variable to one value and a condition
requiring it to have another may be removed as contradictory.  Figure 9.3.7 represents
the specialization of a state with dynamic values W, X, Y and Z. By setting Y to n,
the specialized state has no arc leading to the middle descendant state of the original
state, as that arc requires Y to have the value m;

W  X  Y  Z

W=a 
X=b W=c 

Y=m
W=a 
X=d

Y:=n

⇒

Y    Z Y    ZX    Z

W=a 
X=b

W=c 
Y=m

W=a 
X=d

W=a 
X=b 
Y:=n

W=a 
X=d 
Y:=n

W  X  Y  Z W   X   Z

Y    Z Y    ZX    Z

Fig. 9.3.7 Specialization evaluating satisfied conditions

Given a program represented in the graphical form used here, a partial evaluation can
be performed by adding a link leading to the state representing the initial state of the
program which sets some of the variables in it to static values. Then the
specializations can be passed down as indicated above, generalizing to form loops
where necessary to ensure the process of specialization terminates. Having done this,
any state in the transformed graph, which is not reachable from the initial specialized
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state, is removed. This will lead us to a graph representing the specialized program
alone, which can be converted back to standard program form.

Although explained graphically here, the techniques described may be found using
different terminology in most partial evaluation systems and, indeed generally, in
program transformation systems. The combining of nodes may be regarded as a form
of folding and the specialization and hence multiplication of nodes as a form of
unfolding [Burstall and Darlington, 1977]. Good explanations of partial evaluation in
terms of specialization and generalization may be found for functional languages in
the work of Weise et al. [1991] and for Prolog in the work of Sahlin [1993].

9.4 Partial Deduction

The above view of partial evaluation was based on an imperative view of
programming. An alternative way of considering partial evaluation of logic programs
based on their logic foundation has been given by Lloyd and Shepherdson [1991].
Because of its basis in logical deduction, this has been termed partial deduction.

In the abstract view of logic programming, unbound variables require no special
treatment, since terms which contain unbound variables form a natural part of logic
programming. It could be considered therefore that there is no distinction between
partial evaluation and ordinary evaluation in logic programming. The fully expanded
SLD tree for any query gives the full set of possible answers for that query, each of
the non-failure leaves representing an answer which can be found by tracing down
the branches accumulating variable unifications. For an incomplete query, though, an
SLD tree will often be infinite. For example, consider the specialization of the
standard list append to the case where we are appending a list to the fixed list [x,y,z].
If we were to run the query append(A,[x,y,z],B) on Prolog, we would get the
answers:

A=[], B=[x,y,z]
A=[V1], B=[V1,x,y,z]
A=[V1,V2],B=[V1,V2,x,y,z]
A=[V1,V2,V3,x,y,z]

and so on. This could be seen as specializing the query to the infinite set of facts:

appendtoxyz([],[x,y,z]).
appendtoxyz([V1],[V1,x,y,z]).
appendtoxyz([V1,V2],[V1,V2,x,y,z]).
appendtoxyz([V1,V2,V3],[V1,V2,V3,x,y,z]).

and so on.

What is needed is a way of halting this infinite expansion so that we are left with a
program of the form:

appendtoxyz([],[x,y,z]).
appendtoxyz([V|L],[V|A]) :- appendtoxyz(L,A).
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Lloyd and Shepherdson’s solution to this is to note that a partially expanded SLD tree
may be regarded as a definition of a program. A leaf node in a partially expanded
SLD tree may be neither a success node nor a failure node but one which stores a
goal or goals, which would be further expanded in the full SLD tree. Such a leaf node
may be regarded as a “qualified answer” [Vasey, 1986]: the goal at the root of the
SLD tree holds if, following the substitutions on the branches to reach the leaf, the
goals at the leaf hold. Given an incomplete SLD tree, the partially evaluated program
for the query at the root of tree is the set of clauses p(Vars)θi:-Gi where Vars are the
variables in the original query, the Gis are the goals at the leaves of the tree and the
θis the unifications on the branches to those goals. Any clauses from the original
program required to answer any of the Gis are also included in the partially evaluated
program. Full evaluation is a special case of this where Gi is always true. Lloyd and
Shepherdson showed the soundness and completeness of using these incomplete SLD
trees.

Following from this, a method is needed to decide when to halt expansion of the SLD
tree. Techniques to prune infinite branches from SLD trees were considered early on
in the logic programming field [Brough and Walker, 1984]. The technique of
tabulation was developed [Tamaki and Sato, 1986] which stores goals as they are
encountered in the SLD tree in a table. Then, when any goal is found later which is a
variant of one already in the table, its branch of the tree can be replaced by a link to
the branch for the existing node. Using the idea of qualified answers, a node in the
search tree which has a looping link into it may be returned as a clause giving a
qualified answer to the query at the root of the tree, with the looping link represented
by a recursive call. We can see that this is essentially the same process that Turchin
[1986] was using with his building of loops in the supercompilation to overcome the
problem of an infinite computation tree derived by driving the computation.

Generally, the SLD tree for partial deduction is larger than that for full evaluation of a
goal, because partial deduction implies that some variables that are intended by the
programmer to be bound are left unbound. Therefore, the SLD tree must give the
possibilities for every possible binding of those variables, whereas in full evaluation
the variable bindings act as constraints and only those bindings compatible with the
given bindings are considered. In an SLD tree, as in the tree resulting from Turchin’s
driving, each node represents a complete state of computation. The efficiency of Horn
clauses stems from the fact that it is possible to retain soundness and completeness
(ignoring the possibility of infinite trees) while having a single computation rule
which selects for expansion a single goal from the set of goals forming the state of
computation [Lloyd, 1984]. In standard Prolog this is the leftmost goal.

An alternative way of viewing the search tree of a logic program is to divide each
computation state into separate goals, leading to an AND-OR tree [Kowalski, 1979].
In this case OR-nodes are labeled with single goals and the arcs leading from them
are labeled with the variable bindings required for the goal to be rewritten by each of
the possible clauses whose head matches with it. Each of these arcs leads to an
unlabelled AND-node, with arcs leading to a node for each of the goals in the body of
the clause. The advantage of the AND-OR tree representation for partial evaluation is
that it makes finding loops easier. Rather than building a loop only when two entire
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computation states are found to match, it is only necessary to find a match between
individual goals. It is easier to find a correspondence between two atomic goals than
two complete computation states.

9.5 Partial Evaluation and Reactive Systems

A GDC program may in fact be represented by an AND-OR tree, with the OR-arcs
labeled as above and the AND-arcs labeled with the argument assignments. For
instance, the AND-OR graph in Figure 9.5.1.

A   B

B:=[]

L P S G

S:=[] G:=[]

X  Y  Z

Z:=Y

A=[]

A=[P|L]

A:=S
B:=SS

A:=G
B:=SG

L=[]

L=[H|T]

H>P

G:=[H|G1]

L:=T
G:=G1

L=[H|T]
H=<P

L:=T
S:=S1

S:=[H|S1]

X:=SS
Y:=[H|SG]
Z:=B

Z:=[H|W]

X=[] X=[H|T]

X:=T
Z:=W

Fig. 9.5.1 AND-OR representation of quicksort

represents the GDC quick-sort program:

qsort([],B) :- B=[].
qsort([P|L],B)

:- part(L,P,S,G), append(SS,[H|SG],B),
qsort(S,SS), qsort(G,GG).

part([],P,S,G) :- S=[], G=[].
part([H|T],P,S,G) :- H=<P | part(T,P,S1,G), S=[H|S1].
part([H|T],P,S,G) :- H>P | part(T,P,S,G1), G=[H|G1].

append([],Y,Z) :- Z=Y.
append([H|T],Y,Z) :- append(T,Y,W), Z=[H|W].
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The small round nodes in Figure 9.5.1 are the AND-nodes and the rectangular leaves
represent system primitives. The node labeled with the variable arguments A B
represents the qsort actor, the node labeled L P S G the part actor and the one
labeled X Y Z the append actor.

Partial evaluation may proceed in a similar way to that described with the purely OR-
graphs used previously. However, a problem occurs when considering individual
actors in isolation from the context in which they occur. Evaluation of one actor may
bind variables in its siblings. To partially evaluate an actor without taking account of
bindings made by siblings means that a large amount of unnecessary evaluation is
done. Partial evaluation takes account of every possible value allowed for in the
behaviors for the actor rather than the limited set of values that its context dictates. It
is for this reason that in full evaluation of Prolog only the leftmost goal is expanded,
with the trust that the programmer has arranged the goal order so as to provide
maximum benefit from one goal constraining its siblings. In GDC only those actors
that are sufficiently bound so as not to require any information from their siblings in
order to commit to a clause are expanded. In partial evaluation a technique is often
used to limit partial evaluation of components occurring in some context to the finite
set of values which some dynamic variable may have in that context, treating it as
static for each of its possible values. This technique is so common that in their survey
work on partial evaluation, Jones, Gomard and Sestoft [1993] refer to it simply as the
trick.

One way of dealing with this issue in partial deduction is to use a method that is
intermediate between having nodes representing full computation states and nodes
representing individual actors. AND-OR trees are used, but an OR-node may
represent a group of more than one actor. This is done in particular in cases where
one actor is dependent on another. That is, its reduction depends on the value of some
variable local to the behavior in which it occurs which is set by another actor in that
behavior. If a0 is the actor which sets the variable V and a1 is the actor whose
rewriting depends on the value of V, then a node representing a0&a1 can be set up.
In GDC, since a1 is dependent on a0, it cannot rewrite until a0 has committed to a
behavior and reduced. So the a0&a1 combination can only alter through a0
reduction. The OR-arcs descending from it are therefore labeled only with the
channel values required for a0 to commit and the descendants from the AND-node
include a1 (possibly with further channel bindings as it may contain other shared
channels with a0 which need to be bound for a0 to commit). The a1 actor may again
be combined in a single node with other actors and any further combination may be
checked for correspondence and hence node merger with the original a0&a1
combination. On recreating the GDC program from the graph, the a0&a1
combination will become a single actor. The result is a form of goal fusion
[Furukawa and Ueda, 1985]. This will be discussed in further detail and more
formally below in Section 9.7.

Partial evaluation has been described as a transformation of some program P with
respect to some arguments a1,…ak, to give a residual program P´ such that the result
of executing P´(ik+1,…in) is the same as executing P(a1, … , ak,ik+1,… , in) for any
ik+1,… , in. It has already been mentioned that this disregards the case that there is no
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necessity that the specialization is with respect only to the first k arguments to P
rather than any selection of k arguments. Another simplification in this explanation is
that it ignores the possibility that any of the ai may be a compound term which itself
contains further dynamic variables. This is of particular importance in the partial
evaluation of meta-interpreters. Generally an actor of the form

:- reduce(Actor,Prog,InfoIn,InfoOut)

is partially evaluated by binding Actor to some tuple f(v1, … ,vn) where v1, … ,vn

are variables and Prog to some ground representation of a program (InfoIn and
InfoOut being optional additional information input and output from the meta-
interpreter), resulting in an actor reduce_f(v1, … ,vn,InfoOut) together with a
program for reduce_f. For GDC, partial evaluation may be seen as “flattening out”
the arguments of an actor, returning an actor and a partially evaluated program for it
whose arguments are just the channels that occurred in the original argument list, less
the constants and any surrounding functors.

Recall that an actor in a reactive system is a program execution which “reacts” when
it receives a message or partial message. The actor reacts by reducing itself as far as it
can to the point where it is suspended waiting for messages (which may include the
further channels). It can be seen that this activity of transformation to a new process
following the reception of input (but not enough input to fully bind all input channels)
is almost the same as partial evaluation. The difference is that partial evaluation
stores the result of the transformation in response to partial input so that instead of
being used just once in response to the next partial message, it may be re-used any
number of times.

To some extent the program evaluator for any reactive system language is a partial
evaluator. In the parallel functional language Multilisp [Halsted, 1985], for example,
futures are first-class entities in the language which represent locations into which
computations are concurrently putting results. A computation in Multilisp may
proceed putting futures into compound structures and suspending only when the
actual value that is stored in a future is required. Suppose a Multilisp computation
were run with no concurrent computation putting results into some futures it took as
input. A stored version of the program as it finally suspended waiting for the futures
to be evaluated could be regarded as a partial evaluation in which the futures are the
dynamic variables.

The difference between partial evaluation and general evaluation in a reactive system
is that as the result of partial evaluation is to be saved for repeated future use, it is
worthwhile spending a fair amount of time on it. In the normal evaluation mechanism
in a reactive system it would generally not be cost-effective to spend large amounts of
processor time fully transforming process code in response to its latest input.
However, one could imagine in a large-scale distributed system that a processor
which would otherwise be idle could spend its time partially evaluating an actor
which is waiting for further mesages, with respect to the messages that it has already
received.
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9.6 An Algorithm for Partial Evaluation of GDC Programs

The first stage of partial evaluation would be to execute the program under normal
GDC evaluation. This leads to the point where a computation will consist entirely of
actors suspended due to insufficient variable binding and may be considered a form
of unfolding. GDC evaluation suspends an actor if expansion depends on the value of
some variable that at the time of evaluation is undefined. This is similar to Ershov’s
[1980] mixed computation suspending a computation and adding it to the residual
program if it depends on information that is dynamic.

In partial evaluation, rather than just suspend the actors we make specialized
programs for them. For example, if we had an actor :- p(a,b,c,4,A,B) and behaviors:

p(a,V,W,X,Y,Z) :- q(V,X,M,N), r(M,Y,P), s(W,N,P,Z).

q(b,A,B,C) :- f(A,B,C).

r(c,Y,Z) :- g(Y,Z).
r(d,Y,Z) :- h(Y,Z).

s(W,X,Y,Z) :- X>5 | t(W, Z).
s(W,X,Y,Z) :- X<5 | u(X,Y,Z).

f(I,J,K) :- I>3 | m(J,K).
f(I,J,K) :- I=<3 | n(J,K).

the actor can be reduced to the point where we have the subactors :-
m(M,N),r(M,A,P),s(c,N,P,B), but no further since none of the actors at this point is
sufficiently bound to allow further reduction. However, the actor s(c,N,P,B) has its
first variable bound, so we can specialize it to some new actor sc(N,P,B) with a
program giving the behavior of s when restricted to the cases where its first argument
is c.

One distinction between unfolding and normal evaluation in event driven languages
is that noted by Furukawa et al. [1988], who developed a set of rules for unfolding
programs in the concurrent logic language GHC, that no assignment to variables in
the initial actor should take place. This is because in these languages, for example, a
clause p(X,Y) :- X=a, q(X,Y) will cause the actor p(U,V) when executed to send a
message a to the channel U, q(X,Y) will be executed simultaneously, not necessarily
waiting for its first argument to be bound to a unless this binding is needed for it to
proceed further) whereas a clause p(a,Y) :- q(a,Y) will cause the actor p(U,V) to be
suspended waiting for message a to arrive at channel U so that it can match. During
unfolding, any assignment to a variable that occurred in the initial actor is left
suspended since otherwise the semantics of the program would be changed, but the
right-hand side of the assignment replaces occurrences of that variable in other actors
being unfolded. Another way of thinking of it is to ensure that output assignments
occur during final evaluation rather than prematurely during partial evaluation.

The unfolding mechanism described above means that non-deterministic choices
made in commitment in event driven languages are made during partial evaluation
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when possible. This means that the residual program will not be equivalent to the
initial program in terms of the solutions which it is possible it may give, since some
may have been lost during partial evaluation. If this is undesirable, it may be avoided
by restricting the unfolding to actors where there is only one possible commitment,
suspending for the next stage of partial evaluation those actors where an
indeterministic choice is possible.

The next stage is the specialization of individual suspended actors, referred to as
reparametrization in Sahlin’s [1993] work on partial evaluation of Prolog. It means
constructing a set of behaviors specialized to the particular bindings in an actor. The
process of specialization can be broken down to the following steps:

1. Remove any behaviors with which the actor cannot match.

2. Pass through any bindings in the actor to the remaining behaviors.

3. Rename the actor, restrict its argument to the actor’s variables.

4. Partially evaluate the bodies of the behaviors.

Stage 4 is a recursive call on the entire partial evaluation algorithm, except that when
we partially evaluate a set of actors, message sends to channels which occur in the
head of the behavior are not executed for the reasons noted. The whole process is
similar to the specialization process described diagrammatically above in
supercompilation. The removal of behaviors which cannot match in Stage 1 is
equivalent to the removal of arcs with assignments of a variable to one value and a
condition requiring it to have another. Stage 2 is the pushing down of the messages,
or constant propagation. Note that when the messages are passed through, conditions
in the guard of a behavior may become further bound, a guard condition being
removed if it evaluates true, the whole behavior being removed if it evaluates false.
The diagrammatic notation of supercompilation did not directly name the nodes, but
the renaming of stage 3 is equivalent to the establishment of a separate node.

As an example of specialization, consider the initial actor: g([A,3|B],C,4,D) with
behaviors:

g([W],X,Y,Z) :- a(W,X,Y,Z).
g([H|T],6,Y,Z) :- b(H,T,Y,Z).
g([U,V|W],X,Y,Z) :- V>5 | c(U,W,X,Y,Z).
g([U,V|W],7,Y,Z) :- V=<5 | d(U,W,Y,A,B), e(A,B,X,Z).
g([H|T],X,Y,Z) :- X>=8 | f(H,Y,U,V), g([U|T],V,Y,Z).

The steps in specialization are as follows:

1. Behavior removal

first behavior removed

g([H|T],6,Y,Z) :- b(H,T,Y Z).
g([U,V|W],X,Y,Z) :- V>5 | c(U,W,X,Y,Z).
g([U,V|W],7,Y,Z) :- V=<5 | d(U,W,Y,A,B), e(A,B,X,Z).
g([H|T],X,Y,Z) :- X>=8 | f(H,Y,U,V), g([U|T],V,Y,Z).
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2. Passing through messages

g([H,3|B],6,4,Z) :- b(H,[3|B],4,Z).
g([U,3|W],X,4,Z) :- 3>5 | c(U,W,X,4,Z).

guard becomes false

g([U,3|W],7,4,Z) :- 3=<5 | d(U,W,4,A,B), e(A,B,X,Z).
guard becomes true

g([H,3|B],X,4,Z) :- X>=8 | f(H,4,U,V), g([U,3|B],V,4,Z).

3. Rename predicate giving actor g1(A, B, C, D)
g1(H,B,6,Z) :- b(H,[3|B],4,Z).
g1(U,W,7,Z) :- d(U,W,4,A,B), e(A,B,X,Z).
g1(H,B,X Z) :- X>=8 | f(H,4,U,V), g([U,3|B],V,4,Z).

4. Partially evaluating behavior bodies

g1(H,B,6,Z) :- b1(H,B,Z).
g1(U,W,7,Z) :- d1(U,W,A,B), e(A,B,X,Z).
g1(H,B,X Z) :- X>8 | f1(H,U,V), g2(U,B,V,Z).

At Stage 4 in the above example, it was assumed that during the specialization of the
actor g([A,3|B],C,4,D) to g1(A,B,C,D) the actor g([U,3|B],V,4,Z) would be found
in the body of the third behavior and the algorithm applied recursively giving some
new actor g2(U,B,V,Z). However g([U,3|B],V,4,Z) is identical to g([A,3|B],C,4,D)
in all but variable name. If specialization were to proceed it would do so identically
as above except for variable names, resulting in the need to specialize
g([U´,3|B],V´,4,Z´) and so on infinitely.

Clearly it is possible to specialize g([U,3|B],V,4,Z) to a recursive call g1(U,B,V,Z).
This is a case where we are looking for equivalences, in our diagrammatic notation
making a loop which turns an infinite tree into a graph. In this case, the equivalence is
simple, as the two calls are identical in all but variable name. However, the stop
criterion “equivalent except for variable names” is too weak and will not prevent
infinite unfolding in all cases. Consider specialization of a program that performs list
reversing with an accumulator and also applies a function with argument n to items in
the list.

The original program is:

freverse(N,[],Acc,R) :- R=Acc.
freverse(N,[H|T],Acc,R)

:- f(N,H,X), freverse(N,T,[X|Acc] R).

If we specialize freverse(n,A,[] B) with these behaviors we get, before constant
propagation:

freverse1([],R) :- R=[].
freverse1([H|T],R) :- f(n,H,X), freverse(n,T,[X],R).

The actor f(n,H,X) will specialize to some actor fn(H,X). The second actor here
requires specialization and is not equivalent in all but channel names to the previous
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actorl freverse(n,A,[],B), so we can specialize freverse(n,T,[X],R) to
freverse2(T,X,R) with behaviors:

freverse2([],X,R) :- R=[X].
freverse2([H|T],X,R) :- f(n,H,X1), freverse(T,[X1,X],R).

The actor f(n,H,X1) specializes to fn(H,X1) but freverse(T,[X1,X], R) is not
identical in all but variable names to a previously specialized actor so it becomes
freverse3(T,X1,X,R) and so on. We end up constructing a separate actor for every
possible length of the accumulator and specialization continues without terminating.

What is needed is a recognition that freverse(n,A,[],B) and freverse(n,T,[X],R) are
related. In the place of separate specializations, we specialize freverse(n,A,Acc,B)
to freverse0(A,Acc,B), replacing freverse(n,A,[],B) by freverse0(A,[],B) and
freverse(n,T,[X],R) by freverse0(T,[X],R). That is, we are generalizing by
abstracting out an argument that is diverging on recursive calls. This is a
formalization of Turchin’s generalization in his supercompilation.

In general, if specializing an actor aB and we have previously specialized an actor of
the same predicate name and arity aA, we check for recursion by matching the
arguments of aA with those of aB. A divergence is found where a constant in aA

matches against a variable or tuple in aB, two differing constants match, or where two
tuples A and B of differing name or arity match, such that there is no well-founded
ordering f such that AfB. Bruynooghe et al. [1992] have given a detailed
consideration of the use of well-founded orderings for avoiding infinite specialization
in partial evaluation. Consideration of suitable well-founded orderings for actor
languages is currently a matter under investigation.

We need to find an actor which generalizes aA and aB, that is an actor a such that
there are substitutions θ and ψ where aψ=aA and aθ=aB. The actor should be the
least general generalization, that is such that there is no ψ´, θ´ and a´ where a´ψ´=aA

and a´θ´=aB and |ψ´|<|ψ|. Plotkin [1970] first described this process under the name
anti-unification.

Following generalization we specialize a to give a´, return a´θ as the residual actor
for aB and replace the original specialized version of aA by a´ψ. It should be recalled
that the specialization of aB and hence generalization may occur within the attempt to
construct behaviors specialized for aA, if this is the case the specialization of aA,
referred to as “overspecialization”, is abandoned. This is referred to as generalized
restart by Sahlin [1993].

In the special case where ψ is empty, we can use the behaviors originally obtained
from the specialization of aA and replace by a recursive call to the actor introduced
then (i.e. aAθ). This covers cases where no generalization is required and actors are
equivalent except for variable names.

An algorithm that may be used for generalization is given in Figure 9.6.1.
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set θ, ψ and ξ to { }; A to the list of arguments in aA

set B to the list of arguments in aB; C to the list of arguments in g0
repeat

let hA = head(A), hB = head(B), hC = head(C),
let tA = tail(A), tB = tail(B), tC = tail(C)

if hB is a variable then

if hA is a variable then
set θ to θ∪{hA:=hB}, ξ to ξ∪{hC:=hA}, A to tA, B to tB, C to tC

else set ψ to ψ∪{hB:=hA}, ξ to ξ∪{hC:=hB}, A to tA, B to tB, C to tC
else if hA is a variable then

if hB a tuple or hA is a result of a previous generalization then
set ξ to ξ∪{hC:=hA}, θ to θ∪{hC:=hB}, A to tA, B to tB, C to tC

else exit, convergence found
else if hA and hB are tuples then

if the names and arities of hB and hA are the same then

let M be the most general term of hB in

set A to the arguments of hA appended to tA
set B to the arguments of hB appended to tB
set C to the arguments of M appended to tC
set ξ to ξ∪{hC:=M}

else if hA f hB for some f then exit, convergence found

else set θ to θ∪{hC:=hB}, ψ to ψ∪{hC:=hA},  A to tA, B to tB, C to tC
else if hA is a tuple then exit, convergence found

else if hA=hB then set ξ to ξ∪{hC:=hB}, A to tA, B to tB, C to tC
else

set θ to θ∪{hC:=hB}, ψ to ψ∪{hC:=hA}, A to tA, B to tB, C to tC
until A is empty

Figure 9.6.1 Generalization algorithm

On exit from this algorithm, the generalization a is given by a0ξ where a0 is the most
general actor for aA and aB that is, an actor of the same name and arity but with each
argument a new distinct variable. If the algorithm exits early with convergence, then
it is shown that no looping is occurring, aA is left alone and aB specialized to a new
actor. It is necessary to check that this convergence is not in fact a reintroduction of
an over-specialization, so if a variable matches against a non-variable, it is only
treated as a convergence if the variable did not arise from a previous generalization.
Unless a definite convergence is found, the algorithm will always convert aA and aB

to calls on instances of an actor for a0ξ, or convert the call aB to a recursive call on
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the actor for aA when ψ is empty. In the latter case, no more partial evaluation is
done. In the former case, since a0ξ is a generalization and since it is not possible to
infinitely generalize (the most general actor will eventually be reached), partial
evaluation will always terminate.

Sahlin [1993] uses for his version of our test of convergence hA f hB the test

termsize(hA) > termsize(hB), where termsize(x) is defined on Prolog terms as:

termsize(x) = 
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This generalization algorithm, however, is not sufficient to partially evaluate many
meta-interpreters. Consider the case where we have

reduce(Actor) :- rule(Actor,Body), reduce(Body)
rule(f(X),Body) :- Body:=g(X).

Partial evaluation of reduce(f(X)), to give a new actor reducef(X) with appropriate
behaviors, will come across the partial evaluation of reduce(g(X)) and since it is not
the case that termsize(f(X))>termsize(g(X)), both generalize back to the original
reduce(f(X)) and reduce(g(X)).  So we fail to evaluate away the interpreter.

In fact, two tuples with differing names or arities are only possibly diverging if we
have an infinite number of names. If we cannot generate any new tuple names, that is
there is no use of the Prolog univ (=..) or its equivalents which can convert from a
list to a tuple whose functor is the item at the head of a list and whose arguments are
the items on its tail, we can safely take a matching of tuples with differing names or
arities as a convergence, since we cannot have an infinite chain of actors each
differing from the previous ones in matched tuple name.

Going further, if it is not possible to generate new constants (that is there is no use of
list to string primitives) we can safely assume a convergence has been found if two
actors differ only in matching constants and it follows that if we cannot generate any
new names at all, we cannot generate any new tuple names.

9.7 Actor Fusion

As noted previously, we can represent a GDC program as an AND-OR graph, with
individual nodes representing individual actor states, but we also considered a variant
where a node might represent the state of a network of actors. The limit of this is
Turchin’s original system where each node represented the network, all actors
together making a complete system state. In the representation, a node in the AND-
OR graph is labeled with the variables representing the dynamic information, which
is the unbound variables in an individual actor. The static information attached to the
node is the complete set of arguments, which is not required in the final AND-OR
graph, but is required to detect possible node mergers.
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An OR-node represents an actor, with the arcs leading from it labeled with the
variable unifications (which are taken to include guard conditions) necessary for a
node to commit to a particular behavior. An AND-node represents an individual
behavior, the arcs leading from it leading to the nodes representing the actors in the
behavior and labeled with bindings for the dynamic variables of these nodes. So a
complete actor A, which may rewrite using a different behaviors is represented by
Figure 9.7.1 where vars(A) are the variables in A and θi is the binding of these
variables necessary for A to commit to the behavior represented by the i-th AND-
node.

vars(A)

θ 1 θa…

… …
Fig. 9.7.1 Representation of a single actor

A node representing two actors, A and B, will be labeled with the union of the
variables in A and B. It may reduce either by A becoming sufficiently bound to
rewrite or by B becoming sufficiently bound to rewrite. Suppose there are b
behaviors to which B can commit, with φ1 to φb being the substitutions required for
commitment to each behavior. Then there are a+b ways in which the A&B
combination may reduce. If the ith behavior for A has the form Aθi:-Gi1,…,Gini, then

the effect of A becoming bound to commit by this behavior changes the A&B
combination to a Gi1&…&Gini&Bθi combination. Note the bindings on B occur
because B may share some channels with A which are required to be bound for A to
commit using this behavior. We can represent this by adding a new arc to each of the
AND-nodes representing the possibly further bound actor out of A&B which did not
commit first. The subsection of the AND-OR graph for the A&B combination is
given in Figure 9.7.2.

Note that some variables in A and B occur only in A and B, that is they are used to
convey information into or out of the A&B combination but only between A and B
within this combination. We will call these channels links(A,B). If all the bindings
required for B to commit, φ1 to φb, include a binding for one of links(A,B) then B
cannot commit before A and the only arcs that need be included in the node for A&B
are those representing A committing. In addition, links(A,B) are purely internal in
A&B and thus need not be represented in the root node for A&B. This leads to a
simpler structure for A&B given in Figure 9.7.3.
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vars(A) ∪ vars(B)

… … … …

… …θ 1 θa φ1
φb

Bθ1 Bθa
Aφ1 Aφb

Fig. 9.7.2 Representation of two actors combined

The rules for comparing nodes in the graph and forming loops apply to nodes formed
by actor fusion as to any other. Before any behaviors are developed for the fused
node with variables vars(A)∪vars(B)-links(A,B), they should be checked against
other actors formed by fusing actors of the same name and arity as A and B, using the
same generalization algorithm used previously for specialization. Should a
correspondence be found, as before the fused call is turned into a call to the
previously defined actor if it is identical except for variable names to a previous fused
call, or if the only correspondences are between non-variables in A&B and variables
in the previous fusion. Otherwise, if a more general correspondence is found, the
previous predicate is abandoned as over-specialized and a more general one in which
there is less constant propagation is produced.

vars(A)∪vars(B)-links(A,B)

θ1 θa

Bθ1 Bθa

… …

…

Fig. 9.7.3 Simpler representation of two actors combined

The technique of searching for correspondences between conjunctions of goals in the
SLD tree was described formally, extending Tamaki and Sato’s work on tabulation,
by Boulanger and Bruynooghe [1992]. Their work is a generalization of previous
work on goal fusion, particularly that of Proietti and Pettorossi [1991; 1993]. Proietti
and Pettorossi were particularly interested in using the technique to eliminate
unnecessary variables. As shown above, variables linking the two fused actors are
eliminated, although it may seem that the communication using these variables has
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simply been pushed down a level. However, it should be recalled that a similar actor
fusion may take place among actors in the bodies of the new behaviors developed for
A&B. It is when such a fusion can be identified as a version of A&B and converted in
a recursive call that the elimination of unnecessary channels occurs. Restriction of
actor fusion to cases where one actor is dependent on another ensures there is no loss
of potential parallelism.

9.8 Actor Fusion Examples

Actor fusion in GDC constructs a set of behaviors for A&B as follows. For each
behavior of the predicate for A, which will take the form Ai:-<guard>i|<body>i, a
new behavior for A&B is constructed. Unifications θi and ψi are found such that
Aθi=Aiψi=the most general unification of A and Ai, with θi extended to rename all
channels in A to their matching channels in Ai and also to rename all channels in B
with new names. The arguments in the head of the new behavior are those of Ai, less
the linking channels link(A,B), appended to a copy of all those channels in Bθi but
not in Aθi. The body of the new behavior is initially the conjunction of <body>i and
Bθi but Bθi is unfolded to give a set of suspended actors <bodyg>i. Unfolding is, as
described above, similar to normal evaluation with channels in the head of the new
behavior treated as channels in the initial actor in the top-level unfolding.
Assignments are not executed, but occurrences of the channel on the left-hand side of
the assignment in the body of the behavior are replaced by the right-hand side of the
assignment; if this should cause any actor in <body>i to become further bound, it too
is unfolded. Following this unfolding, each of the actors in <bodyg>i is tested for
fusion with those in <body>i and any which do not fuse is specialized using the
method given above, actor fusion being applied recursively to those which are
fuseable.

As a specific example, consider the fusion of append(L1,L2,L3) and length(L3,N)
to give a new actor append_length(L1,L2,N), eliminating channel L3. If initially:

append([],L,L1) :- L1=L.
append_length([H|T],L,L1)

:- append(T,L,L2), L1=[H|L2].

length([],N) :- N=0.
length([H|T],N)

:- append(T,L,L2), L1=[H|L2], length(L1,N).

the initial behaviors for append_length are:

append_length([],L,N) :- L1=L, length(L1,N).
append_length([H|T],N)

:- length(T,N1) ), add(1,N1,N).
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Following execution of message sends to non-head channels, we have:

append_length([],L,N) :- length(L N).
append_length([H|T],L,N)

:- append(T,L,L2), length([H|L2],N).
After unfolding the second actor in the body of the second behavior we have:

append_length([],L,N) :- length(L,N).
append_length([H|T],L,N)

:- append(T,L,L2), length(L2 N1), add(1,N1,N).

The fusion of actors append(T,L,L2) and length(L2,N1) in the second behavior is
identical in all but variable name to the previous fusion, so we can convert it to a call
to the previously defined predicate append_length, giving behaviors:

append_length([],L,N) :- length(L,N).
append_length([H|T],L,N)

:- append_length (T,L,N1), add(1,N1,N).
A general rule is that no attempts are made to fuse actors which are recursive calls. In
this case, append_length(T,L,N1) being recursive is not fused with add(1,N1,N).

Folding to eliminate a channel (and the consequent building up of a data structure
which is passed in this channel and then broken down again) is similar to the
functional programming transformation technique of deforestation [Wadler, 1988].
Where in logic programming the goals to be combined have the form

f(a1,…,an,V), g(V,b1,…,bm)

in functional programming the form would be f a1 … an (g b1 … bm). As can be
seen, in functional programming the communication between f and g may be implicit
rather than through an explicit variable. The correspondence is rather more obvious if
the nested function call is abstracted out:

let V = g b1 … bm in f a1 … an V.

While it has been suggested that in general actor fusion should be restricted to those
cases where one actor is dependent on another, there are other circumstances where
the method may be of benefit. In particular, it may be used to combine multiple
traversals of a single data structure into one traversal. Consider, for example, finding
both the sum and product of the leaves of a tree:

sum_product(T,S,P) :- sum(T,S), prod(T,P).
sum(tip(N),S) :- S=N.
sum(tree(L,R),S) :- sum(L,SL), sum(R,SR), add(SL,SR,S).

prod(tip(N),P) :- P=N.
prod(tree(L,R), ) :- prod(L,PL), prod(R,PR), mult(PL,PR,S).

To combine these into a single traversal of the tree, first push prod(T,P) into the
behaviors for sum giving:

sumprod(tip(N),S,P) :- S=N, prod(tip(N),P).
sumprod(tree(L,R),S,P)

:- sum(L,SL), sum(R,SR), add(SL,SR,S), prod(tree(L,R),P).
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Unfolding the calls to prod in the behavior bodies gives:

sumprod(tip(N),S,P) :− S=N, P=N.
sumprod(tree(L,R),S,P)

:- sum(L,SL), sum(R,SR), add(SL, R, ),
prod(L,PL), prod(R,PR), mult(PL,PR,S).

Folding (that is noting two possible actor combines which are identical in all but
variable name to the original one) in the body of the second behavior gives:

sumprod(tip(N),S,P) :- S=N, P=N.
sumprod(tree(L,R),S,P)

:- sumprod(L,SL,PL), sumprod(R,SR,PR),
add(SL,SR,S), mult(PL,PR,S).

Two actors are considered identical during the fusion if they are identical in actor
name, arity and in input channels, differing only in channels which are only used for
output. If during fusion two actors are identical then one of the actors can be removed
and all occurrences of its output channels replaced in the rest of the body of the
behavior with the equivalent channels from the other actor. In this case, it acts to
remove computations, which are redundant, as they act simply to reproduce results
obtained elsewhere.

Lakhotia and Sterling [1988] refer to this technique of combining several traversals
into one as clausal join. As suggested earlier, their methods are fairly ad hoc and they
failed to note it as just one form of a more general method of goal fusion.

9.9 Partial Evaluation of an Interpreter

As an extended example of partial evaluation, we consider the use of the techniques
we have described on a GDC interpreter for a simple imperative language. The effect
is to translate programs written in that language to GDC and also to partially evaluate
them should they be supplied with partial input. As we have mentioned, some early
work in partial evaluation, such as that of Ershov [1980] did consider the direct
partial evaluation of imperative languages. Later work has tended to go through a
declarative language as a meta-language.  Ross, for example [1988] uses Prolog.

It is possible and useful, to define an imperative language using predicate logic, in
terms of the values held by variables, or environment, before and after the execution
of statements in the language [Hehner et al., 1986]. If the logic used is in the form of
a logic program, the definition serves a dual purpose. Firstly it is a specification of
the semantics of the imperative language, but secondly, as it is executable, it serves
also as an interpreter for the imperative language.

Here an interpreter for an imperative language written in a actor language is partially
evaluated with respect to some program in that imperative language. This gives us a
actor program that has the same semantics as the original imperative program. If we
partially supply the input data to the imperative program, this data will further
specialize the residual program. This is a different approach from Ross, who uses a
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separate translator from an imperative language to a logic program and then uses the
full partial evaluation algorithm on the resulting program.

Adding a back-end which converts the final logic program back to the imperative
language would complete the process whereby an logic language is used to partially
evaluate an imperative language, although this last stage is not covered here (it has
been considered in [Huntbach, 1990]).

The present use of an actor language rather than Ross’s Prolog gains several
advantages. Firstly, where the sequentiality of a standard imperative language does
not effect its semantics, the sequentiality disappears in the concurrent specification.
As a result, the conversion process automatically introduces parallelism into the
program. This has the potential of reverse engineering [Chikofsky and Cross, 1990]
“dusty deck” imperative programs into versions that can exploit the new generation
of parallel architectures. Secondly, it extends the techniques to imperative languages
that already embody parallel processing.

The idea of using a meta-language as the basis for a program manipulation system is
also a part of the Programmer’s Apprentice project [Waters, 1985]. In [Huntbach,
1990] an equivalence was shown between the plan notation of the Programmer’s
Apprentice and logic programming. The present method of language translation
through partial evaluation is similar to the abstraction and reimplementation method
of Waters [1988], though whereas the Programmer’s Apprentice uses an ad hoc
library of programming clichés to transform its meta-language version of the
program, a rather more systematic transformation method is used.

Statements in an imperative language are specified in terms of a relation between an
input environment and an output environment, where an environment is simply a list
of name-value pairs. The figure below gives a BNF for a simple imperative language
involving just assignments, loops and conditionals. Actual symbols of the language
are given in bold type, non-terminal symbols within angled brackets. The BNF is
such that programs in the language are also valid terms in an actor language,
therefore no parser is required (it is assumed that, as in Prolog, certain operators, such
as the arithmetic operators, are predefined as infix). For simplicity, the BNF suggests
that arithmetic expressions may only take a simple <Variable> <Operator> <Variable>
form, though it would not be difficult to extend it to cover full arithmetic expressions.
Variables are represented by strings beginning with lower case letters and are thus
distinct from the channels of the meta-language. This is, of course, essential, since
imperative variables may be reassigned values, whereas channels have a single-
assignment property. It is also assumed that the language provides simple list
handling primitives. There is no type checking.

<Program> : := <Block>
<Block> : := []
<Block> : := [ <Statement> {, <Statement> } ]
<Statement> : := if(<Condition>,<Block>,<Block>)
<Statement> : := while(<Condition>,<Block>)
<Statement> ::= <Variable> := <Expression>
<Expression> : := <Variable> <ArithOp> <Variable>
<Expression> : := hd(<Variable>)
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<Expression> := tl(<Variable>)
<Expression> : := cons(<Variable>,<Variable>)
<Expression> := []
<Condition> := empty(<Variable>)
<Condition> := <Variable> <CompOp> <Variable>

The semantics for the language are given by the GDC interpreter for it. The semantics
for an assignment statement give an output environment in which the variable on the
left-hand-side of the assignment is linked with the result obtained from evaluating the
expression on the right-hand-side of the assignment in the input environment, with all
other elements of the environment unchanged. A conditional statement has the
semantics of either of its two substatements depending on how its condition evaluates
in the input environment. The semantics for a while statement involve the standard
logic programming conversion of iteration to recursion. Sequencing is achieved by
taking the output environment of the first statement as the input for the rest. In the
GDC interpreter below code for arithmetic operators and comparison operators other
than plus and greater then is not given, but will follow the same pattern as plus and
greater than. It would be possible to extend the interpreter considerably to give a
more realistic imperative language, or to add other desired features. In [Huntbach,
1991], for example, a version of it is given which includes Occam-style guarded
commands.

block(InEnv,[],OutEnv) :- OutEnv=InEnv.
block(InEnv,[Stat|Statements],OutEnv)

:- statement(InEnv,Stat,MidEnv),
block(MidEnv,Statements,OutEnv).

statement(InEnv,Var:=Expr,OutEnv)
:- evalinenv(InEnv,Expr,Val), replace(Var,Val,InEnv,OutEnv).

statement(InEnv,while(Cond,Block),OutEnv)
:- evalinenv(InEnv,Cond,TruthVal),

loop(TruthVal,InEnv,Cond,Block,OutEnv).
statement(InEnv,if(Cond,Block1,Block2),OutEnv)

:- evalinenv(InEnv,Cond,TruthVal),
switch(TruthVal,InEnv,Block1,Block2,OutEnv).

switch(true,InEnv,Block1,Block2,OutEnv)
:- block(InEnv,Block1,OutEnv).

switch(false,InEnv,Block1,Block2,OutEnv)
:- block(InEnv,Block2,OutEnv).

loop(false,InEnv,Cond,Block,OutEnv) :- OutEnv=InEnv.
loop(true,InEnv,Cond,Block,OutEnv)

:- block(InEnv,Block,MidEnv),
evalinenv(MidEnv,Cond,TruthVal),
loop(TruthVal, MidEnv, Cond, Block, OutEnv).

evalinenv(Env,N,V) :- integer(N) | V:=N.
evalinenv(Env,N,V) :- string(N) | lookup(N,Env,V).
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evalinenv(Env,E1+E2,V)
:- evalinenv(Env,E1,V1), evalinenv(Env,E2,V2),

V:=V1+V2.
evalinenev(Env,E1>E2,V)

:- evalinenv(Env,E1,V1), evalinenv(Env,E2,V2),
gt(V1,V2,V).

evalinenv(Env,not(E),V)
:- evalinenv(Env,E,V1), negate(V1,V).

evalinenv(Env,hd(E),V)
:- evalinenv(Env,E,V1), head(V1,V).

evalinenv(Env,tl(E),V)
:- evalinenv(Env,E,V1), tail(V1,V).

evalinenv(Env,cons(E1,E2),V)
:- evalinenv(Env,E1,V1),

evalinenv(Env,E2,V2), cons(V1,V2,V).
evalinenv(Env,empty(E),V)

:- evalinenv(Env,E,V1), null(V1,V).

gt(V1,V2,V) :- V1>V2 | V=true.
gt(V1,V2,V) :- V1=<V2 | V=false.

negate(true,V) :- V=false.
negate(false,V) :- V=true.

cons(H,T,L) :- L=[H|T].

head([H|T],X) :- X=H.

tail([H|T],X) :- X=T.

null([],V) :- V=true.
null([H|T],V) :- V=false.

lookup(Var,[(Var1,Val1)|Env],Val) :- Var=Var1
| Val=Val1.

lookup(Var,[(Var1,Val1)|Env], Val) :- Var=\=Var1
| lookup(Var,Env,Val).

replace(Var,Val,[(Var1,Val1)|Env1],Env) :- Var=\=Var1
| replace(Var,Val,Env1,Env2),

Env=[(Var1,Val1)|Env2].
replace(Var,Val,[(Var1,Val1)|Env1], Env) :- Var==Var1

| Env=[(Var,Val)|Env1].
As an example of partial evaluation of this interpreter, a simple list reversal program
is used which uses a loop that builds up on an accumulator. The imperative code is:



314 Chapter 9

while(not(empty(in), [
acc:=cons(hd(in),acc),
in:=tl(in)

]

with in the input list, acc initially set to the empty list and the final value of acc
returned as output. This can be achieved by adding the behavior:

reverse(L,R)
:- block([(in,L),(acc,[])],

[while(not(empty(in),
[acc:=cons(hd(in),acc), in:=tl(in)])], Env),

lookup(acc,Env,R).

to the interpreter and then partially evaluating the actor reverse(L, R).

The actor will unfold to the set of actors:

:- null(L,V),
negate(V,V1),
loop(V1,[(in,L),(acc,[])],not(empty(in)),

[acc:=cons(hd(in),acc),in:=tl(in)],Env),
lookup(acc,Env,R).

The null actor is suspended because it cannot rewrite further while L is unbound. The
negate actor is suspended as V is unbound. The loop actor is suspended as V1 is
unbound and the lookup actor is suspended as Env is unbound. The loop actor can
be specialized, but as it is dependent on the negate actor we leave it for fusion. At
this stage the null actor and negate actor are fused to remove the variable V. This
gives the new actor null_negate(L,V1), with behaviors (before the partial
evaluation of their bodies):

null_negate([],V1) :- V=true, negate(V,V1).
null_negate([H|T],V1) :- V=false, negate(V,V1).

In both cases, as the channel V does not occur in the head of the behaviors, so we can
go ahead with sending the message, then unfold the negate actor, giving:

null_negate([],V1) :- V1=false.
null_negate([H|T],V1) :- V =true.

The next stage fuses null_negate(L,V1) with the loop actor. This will give the
actor null_negate_loop(L,Env) with behaviors, before partial evaluation of their
bodies:

null_negate_loop([],Env)
:- V1=true,

loop(V1,[(in,[]),(acc,[])],not(empty(in)),
[acc:=cons(hd(in),acc),in:=tl(in)],Env).

null_negate_loop([H|T], Env)
:- V1=false,

loop(V1,[(in,[H|T]),(acc,[])],not(empty(in)),
[acc:=cons(hd(in),acc),in:=tl(in)],Env).

Note how the L in the loop actor has been bound in the first behavior to [] and in the
second to [H|T] as this channel was shared with the null_negate actor and the
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arguments with which it matches in the behaviors for null_negate are so bound. As
with the formation of null_negate, the assignments within the bodies may take
place and this enables the loop actors within the bodies to be unfolded until the point
is reached where they have unfolded to actors which are all suspended:

null_negate_loop([],Env)
:- Env=[(in,[]),(acc,[])].

null_negate_loop([H|T],Env)
:- null(T,V),

negate(V, V1),
loop(V1,[(in,T),(acc,[H])],not(empty(in)),

[acc:=cons(hd(in),acc),in:=tl(in)],Env).

Note in the second behavior that the lookup and replace actors altering the
environments are completely evaluated in the unfolding. This gives an environment
in which in is paired with the tail of the initial list and acc is paired with a list of one
element, the head of the initial list.

At this point, null(T,V) and negate(T,V1) are fused in the second behavior and this
is found to be equivalent in all but channel names to the previous fusion of a null and
negate actor, so it becomes null_negate(T,V1) with no further definition of
behaviors. When null_negate(T,V1) is fused with the loop actor, however, a
divergence is found. It is equivalent to the previous fusion of a null_negate with a
loop actor, except that the channel T occurs in the place of the previous L and also in
the place of [] there is now [H]. This latter condition means that the previous fusion is
abandoned as an over-specialization. In the place of null_negate_loop(L,Env),
put:

null_negate_loop1(L,[],Env)

where the behaviors for null_negate_loop1(L,A,Env) are obtained from the fusion
of null_negate(L,V1) and

loop(V1, [(in,T),(acc,A)], not(empty(in)),
[acc:=cons(hd(in),acc), in:=tl(in)], Env)

That is, we have abstracted out the specific value of the accumulator.

The behaviors for null_negate_loop1, following unfolding of the actors in their
bodies but not actor fusion in the bodies are:

null_negate_loop1([],A,Env)
:- Env=[(in,[]),(acc,A)].

null_negate_loop1([H|T],A,Env)
:- null(T,V),

negate(V,V1),
loop(V1,[(in,T),(acc,[H|A])],not(empty(in)),

[acc:=cons(hd(in),acc),in:=tl(in)],Env).

As previously, null(T,V) and negate(V,V1) will fuse to give null_negate(T,V1)
but this time when this is fused with the loop actor, it will be detected as a version of
the previous fusion to form null_negate_loop1 with [H|A] matching against A. A
channel matching against a tuple in this way does not require further generalization
so the fusion becomes the recursive call:
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:- null_negate_loop1([H|T],[H|A],Env),
with no further need to define behaviors.

So the position we are now in is that we have top level actors:

:- null_negate_loop1(L,[],Env),
lookup(acc, Env, R)

with the behaviors for null_negate_loop1:

null_negate_loop1([],A,Env)
:- Env=[(in,[]),(acc,A)].

null_negate_loop1([H|T],A, nv)
:- null_negate_loop1(T,[H|A],Env).

At the top level we can now fuse the two actors, removing the variable Env. This
leaves us with the single actor null_negate_loop1_lookup(L,[],R) with behaviors,
initially:

null_negate_loop1_lookup([],A,R)
:- Env=[(in,[]),(acc,A)], lookup(acc,Env,R).

null_negate_loop1_lookup([H|T],A,Env)
:- null_negate_loop1(T,[H|A],Env),

lookup(acc,Env,R).
In the first of these behaviors, the assignment can be executed and:

lookup(acc,[(in,[]),(acc,A)],R)

unfolds completely to R=A. In the second behavior, the fusion of
null_negate_loop1(T,[H|A],Env) and lookup(acc,Env,R) matches the previous
fusion and so becomes the actor:

null_negate_loop1_lookup(T,[H|A],R).

This leaves null_negate_loop1_lookup(L,[],R) as the residual actor with
behaviors:

null_negate_loop1_lookup([],A,R) :- R=A.
null_negate_loop1_lookup([H|T],A,R)

:- null_negate_loop1_lookup(T,[H|A],R).
It can be seen that we have the standard logic program for reverse with an
accumulator. The interesting point is that the handling of the environment took place
entirely within the partial evaluation. Partial evaluation has had the effect of
compiling away the overhead associated with managing an environment.

Also note that the interpreter for the imperative language detects any implicit
potential parallelism and converts it to the real parallelism of GDC. This implicit
parallelism respects the data dependency of the sequencing of statements giving
parallelism only where it has no effect on the result of the execution. Consider the
execution of the assignments x:=exp1, y:=exp2, z:=exp3 where exp1, exp2 and
exp3 are arbitrary expressions. The call

:- block(Env1,[x:=exp1,y:=exp2,z:=exp3],OutEnv)
will unfold to:
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:- V1 = evaluation of exp1 in Env1,
V2 = evaluation of exp2 in Env2,
V3 = evaluation of exp3 in Env3,
replace(x,V1,Env1,Env2),
replace(y,V2,Env2,Env3),
replace(z,V3,Env3,OutEnv)

Suppose the initial environment (Env1) is:

[(x,1),(y,2),(z,3),(a,4),(b,5),(c,6)]

then the calls to replace will unfold giving:

:- V1 = evaluation of exp1 in Env1,
V2 = evaluation of exp2 in Env2,
V3 = evaluation of exp3 in Env3,
Env2 = [(x,V1),(y,2),(z,3),(a,4),(b,5),(c,6)],
Env3 = [(x,V1),(y,V2),(z,3),(a,4),(b,5),(c,6)],
OutEnv = [(x,V1),(y,V2),(z,V3),(a,4),(b,5),(c,6)]

If exp1, exp2 and exp3 contain references to a, b and c only, they may be evaluated
in parallel. If however, exp2 contains references to x it will use V1 for x and
evaluation will be suspended until V1 is bound by evaluation of exp1. Similarly,
evaluation of exp3 will be halted if it contains references to x or y. In contrast a
purely parallel execution of the assignments which does not respect data dependency
could have indeterminate effect if exp2 contains references to x or exp3 contains
references to x or y. The effect is as if the assignments were carried out in any order.
If the assignments were [x:=y,y:=9,z:=2*x+y], the result would be that x is linked
with either 2 or 9 and z any of 4, 6, 13 or 27.

The interpreter presented retains those elements of the sequential execution which are
a necessary part of the semantics, but not those which are not, hence the process of
partial evaluation into actors may also be used as an automated paralleliser. We have
separated out what has been termed the kernel from the semantically unnecessary
control [Pratt, 1987].
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Chapter 8

Meta-Interpretation

I can play with the chessmen according to certain rules. But I can
invent a game in which I play with the rules themselves. The pieces
in my game are now the rules of chess, and the rules of the game
are, say, the laws of logic. In that case I have yet another game and
not a metagame.

Ludwig Wittgenstein, Philosophical Remarks

Quis custodiet ipsos custodes? Anyone familiar with the distinction between theory
and metatheory will answer instantly that of course the metaguards guard the guards.
“Meta-X is X about X” and from the time of Russell’s paradox dividing X up into
levels of X, meta-X, meta-meta-X and so on has been a useful aid to thought. If you
have experienced an argument change (as they often do!) from arguing about
something to arguing about the argument, you will have experienced a meta-
argument. If you have ever wondered who trains the people who teach in teacher-
training school, you will have started considering the possibility of an infinite number
of levels in the tower of meta-X. If the answer to this question is that the teachers in
teacher training school teach teaching in general and thus are perfectly capable of
teaching how to teach teaching you will have encountered the idea of metacircular-X.
You will, as well, experience the sort of convoluted sentence to which prolonged
thought on metalevels leads to.

Barklund and Hamfelt [1994], quoting Hart [1961], note that a correspondence can be
drawn between the different layers of reasoning in a system involving metalogic with
the different layers of law in a legal system. Some laws regulate behavior, while
others regulate the practice of law itself; these latter could be termed “metalaws”. The
constitution of a state or organization may be regarded as a formalization of the
concept of metalaws. A person may be judged guilty or innocent under the laws of
the land, but a constitution which contains a Bill of Rights in effect may judge a law
to be guilty or innocent according to this Bill of Rights and rule out laws which
conflict with it. Since there is, in general, no higher level constitution against which a
constitution may be judged, a constitution may be deemed metacircular. A
constitution defines in itself how it operates, but one could separate those clauses of a
constitution which deal with how it operates or may be amended as a
“metaconstitution” or “meta-metalaw”.

The British constitution is, unusually, “unwritten”. This does not mean, as some
suppose, that there is no such thing as a British constitution. Rather, that no formal
distinction is made between constitutional law and any other law: a law affecting or
amending the way the constitution works may be made in the same way as any other
law may be made, there is no special qualified voting or referendum. Ultimately,
British law rests on the absolute authority of the Sovereign (a legal concept that may
have originally meant literally the sovereign as a living human being, but at a later
date was taken to mean the sovereign acting through Parliament). A comparison may
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be drawn between the British legal system and programming languages that do not
have a metalanguage or mix in arbitrarily metaprogramming concepts with the
language itself: the ultimate authority is the hardware. Arguments for and against the
unwritten constitution sound rather like arguments for and against a programming
language without a strong and distinct metaprogramming layer: it is defended for its
efficiency and power and attacked for its inherent lack of safety. Bagehot [1861] in
comparing the UK and USA constitutions, attacks the latter for unnecessary layers of
complexity and defends the former as acceptable since relying on the “reasonableness
of the British middle classes”.

8.1 Metalanguage as Language Definition and Metacircular Interpreters

The concept of a metalanguage as a “language about language” is a vague one and
has led to it being used with several different meanings. The comment that
“metalogical has often been used where extralogical would be more appropriate” has
been made [Weyrauch, 1980]. This point will be returned to later in this chapter.
With programming languages, the term was used early on to describe languages that
could formally describe the meaning or behavior of the first high-level languages,
inspired in particular by Algol [Naur, 1960], one of the first attempts to define a
language formally first and practically second. It was also inspired by concern (see,
for instance, [Feldman, 1966]) that others of the then newly developed high-level
languages could only be genuinely considered “high-level” and could be safely
ported between machines if they could be described in terms other than the assembly
languages into which they compiled. If they could not and the assembly languages in
turn could only be described in terms of the physical electronics of the machines, the
languages were really only defined by the hardware. An important early conference
on metalanguage for programming language description held in Vienna in 1964
[Steel, 1966] was considered then as “among the most valuable and productive
scientific meetings ever held on a subject pertaining to information processing”. Note
that the vagueness of the term metalanguage was already apparent at this stage. Some
of the papers described metalanguages, which built on BNF (Backus Naur Form) and
some explicitly noted the distinction between syntax and semantics. Our interest here
will only be on the semantics side.

As mentioned in Chapter 2, Landin noted a correspondence between Algol and
Church’s lambda calculus [Landin, 1965] and expounded further on it at this Vienna
conference. At the same conference, McCarthy [1965] chose the different approach
of describing Algol in terms of a mini-language he called “Micro-Algol”. Programs
in this language consist only of assignments and conditional gotos of the form if p
then goto a. McCarthy later developed this into a full metacircular interpreter; the
idea was that since the interpreter was written in Micro-Algol and could interpret
Micro-Algol, Micro-Algol was a language, which defined itself. Algol and any other
high-level language that could be translated to Micro-Algol were thus fully defined.
The definition did not have to resort to a lowest-level description in terms of machine
hardware (just as the self-interpreting USA constitution means that the USA legal
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system does not ultimately rely on the whims of a monarch or the reasonableness of
the middle classes).

The following is McCarthy’s [1965] Micro-Algol metacircular interpreter:

micro: n:=c(s,ξ);
if beyond(π,m) then goto done;
s:=statement(n,π);
ξ:=if assignment(s) then a(sn,n+1,a(left(s),value(right(s),ξ),ξ))

else if value(proposition(s),ξ) then a(sn,numb(destination(s),π),ξ)
else a(sn,n+1,ξ);

goto micro;
done:

This requires some explanation. ξ is the state vector of the program π being
interpreted. The state gives the value of all the variables and all other information that
together with the program itself determines the future course of the computation.
Today this would be called a continuation. The pseudo-variable sn, whose value is
included in ξ, gives the number of the statement, which is currently being executed.
a(var,value,ξ) gives the new state resulting from assigning value to variable var;
left(s) gives the variable on the left hand side of an assignment s, right(s) gives the
expression on the right-hand side; value(e,ξ) evaluates expression e when the
current state is ξ; proposition(s) gives p when s is if p then goto a while
destination(s) gives a; numb(L,π) gives the statement number corresponding to
label L in program π.

Landin’s compilation into lambda calculus was the more immediately practical. Since
lambda calculus could be considered the machine code of the abstract SECD machine
which Landin had also developed [Landin, 1963], this could in turn be implemented
on a real machine, thus the approach could be the basis of a practical compiler. The
important thing was the introduction of clarity into what was then something of a
“black-art” of compiler writing through this division into layers. The division was
somewhat spoilt by the necessity to add further facilities to the SECD machine to
cope with those aspects of Algol that could not easily be represented in lambda
calculus. The development of programming languages that were purely sugared
lambda calculus came later [Turner, 1979].

McCarthy’s approach was not designed to lead to a practical compiler, or even to an
impractical one that could nevertheless be put forward as a working model to define
the semantics of a language operationally; it was more an operation in defining
semantics abstractly. An important distinction is that McCarthy’s interpreter makes
the machine state of the language an explicit object in the metalanguage, whereas in
Landin’s approach the implicit machine state of the language is translated to an
implicit machine state in the metalanguage. In the discussions following the
presentations of the papers Landin [1963] links McCarthy’s approach with a paper
presented by Strachey at the same conference, which in retrospect may be seen as
introducing ideas that led to the concept of denotational semantics [Scott and
Strachey, 1971]. (Helpfully for computer science historians, fairly full accounts of
these discussions are included in the proceedings.)
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8.2 Introspection

The idea of a programming language being able to handle an explicit representation
of its own state was of interest to workers in Artificial Intelligence. It was argued that
a crucial component of an intelligent system is the ability to reason about itself, or to
introspect. Maes [1986] gives a simple introduction to the subject. Introspection is
first clearly defined in the language 3-Lisp [Smith, 1984], although features that may
be regarded as introspective are provided in a more ad hoc manner in earlier
languages. The idea is that facilities exist in the language to take objects that may be
assumed to exist at the interpreter or metalanguage level and make them first-class
entities in the language level. In McCarthy’s micro-Algol meta-interpreter, for
example, the pseudo-variable sn might be considered such an object, as indeed might
any part of the state ξ. Object level decisions may be made on the basis of their value
and new values for them constructed and put back into the meta-interpreter. The term
reification came to be used to refer to taking metalevel objects from the program and
making them data, while reflection referred to the reverse process of putting data
objects into the program [Friedman and Wand, 1984].

Introspection was promoted not only as a way for allowing programs to reflect on
themselves, but also as a way for programmers to tailor the programming language
for their own needs, changing the evaluation order, adding traces for debugging and
so on. It was particularly influential in object-oriented programming [Maes, 1987]. In
Smalltalk [Goldberg and Robson, 1989], the idea that “everything is an object”,
including the classes that describe objects and hence the concept of a metaclass as the
class which describes classes, means that introspection is a natural part of the
language. In Prolog, the system predicate clause is a reification predicate, making
an aspect of the program into data, while assert is a reflection predicate. Prolog’s
retract may be regarded as a combination of reification and reflection. Even the cut
(and more so many proposed variants of it) may be regarded as a stereotyped
combination of reification and reflection, giving the program access to the abstract
search space of the interpreter and modifying it, though with severe restrictions on the
modifications possible. This is the connection between extralogical and metalogical
promised earlier.

The key to introspection in programming languages is that it relies on an abstract
interpreter, which is in fact a virtual interpreter. There is no requirement that the
meta-interpreter, which it assumes exists, actually does exist. Indeed it cannot always,
since reflection is often recursive: it is possible for the metalayer to introspect on a
meta-metalayer and so on infinitely, producing what is described as the “tower of
interpreters”. The real interpreter or compiler, which actually implements the
language, is something different and remains unreachable by the programmer. The
concepts in the meta-interpreters are produced lazily as required. If introspection
were introduced into McCarthy’s Micro-Algol, for instance, it would be possible to
access and change sn, the statement position indicator. But there is a clear distinction
between this, an abstract concept and the program counter of the underlying assembly
language. However deep you got into the tower of meta-interpreters, you would never
hit the real program counter.
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The problem with introspection in programming languages is that it gives both the
power and the danger of self-modifying code. In 3-Lisp it is possible to access and
change variable bindings and function definitions using introspection. Thus the
barrier between language and metalanguage is broken down, it becomes a notational
convenience, but not one that can be relied on. If we can change the environment at
whim, we have lost the valuable declarative properties of functional programming.
As Hofstadter [1979] puts it: “below every tangled hierarchy lies an inviolate level.”
The only real metalanguage when we have unlimited reflection (perhaps we could
call it the hyper-language) is the inviolate machine code which implements the
system. In our constitutional analogy, we are back to the position where the only
absolute power lies with the whim of the sovereign; there are no hard constitutional
safeguards. The reasonableness of the programmer in not misusing reflection can be
compared to the reasonableness of the British middle classes in Bagehot’s defense of
the unwritten constitution.

8.3 Amalgamating Language and Metalanguage in Logic Programming

As mentioned above, the introduction of a meta-interpretation layer enables us to
reason explicitly about programs and their execution. In logic programming terms, it
enables one to reason explicitly about theories (collections of clauses) and about the
inference mechanism used to make derivations from these theories. We expressed
concern, however, about the lack of control when we had an implicit meta-interpreter
and an undisciplined approach to manipulating it. This can be overcome by making
an interpreter explicit, but explicit in a limited way. Only those elements of the
interpreter that we want to reason about are made explicit, while other elements
remain implicit. For example, if we want a program that adds or deletes clauses from
the set of clauses but does not make any changes to the inference mechanism, we can
write an interpreter with an explicit representation of the clauses, but the inference
mechanism remaining implicit and inviolate. In doing so, we limit the amount of
damage caused by work at the metalevel. As mentioned above, the metalevel and
object-level are in fact almagamated by giving the programmer control of both. But if
the communication between the two is limited as much as possible in the program it
is good software engineering principle, akin to other ways of dividing up programs
into modules and limiting and making explicit the communication between the
modules.

Bowen and Kowalski [1982] formalized discussion of metaprogramming in logic by
introducing two rules that describe the interactions between the object-level and
metalevel:

Pr |-M demo(A´,B´) A |-L B

A |-L B Pr |-M demo(A´,B´)

These are referred to as reflection rules, the terminology coming from Feferman
[1962] via Weyhrauch [1981]; it is related but not identical to the use of the term
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reflection in introspective systems. Here |-M represents proof at the metalevel, while
|-L represents proof at the object language level. So the first rule states that if it is

possible to prove that demo(A´,B´) follows from the program Pr at the metalevel,
then it can be inferred that B can be proved from A at the object level, while the
second rule states the reverse. A´ is the representation of the object-level theory A at
the metalevel and similarly B´ is the representation of the object-level expression B at
the metalevel. This relationship is specified formally by a naming relationship [van
Harmelen, 1992]. The naming relationship is a formalization of McCarthy’s
packaging of program state into the “state vector” ξ in his meta-interpreter.

The classic “vanilla” meta-interpreter of Prolog is simpler than Bowen and
Kowalski’s demo:

solve(true).
solve((A,B)) :- solve(A), solve(B).
solve(Goal) :- clause(Goal,Body), solve(Body).

because it makes no distinction between object-level and metalevel clauses. Here the
object level and the metalevel language are identical, except that object-level
predicate names are represented by metalevel function names. The blurring of object
and metalevel in clause confuses even this. A particularly important point is that
object-level variables are represented by metalevel variables.

We can remove the problem caused by Prolog’s clause by having the object-level
program represented as an explicit value in the metalevel program, then we can
define a demo which works as indicated by Bowen and Kowalski’s rules:

demo(Pr,[]).
demo(Pr,[A|B]) :- body(Pr,A,Body), demo(Pr,Body), demo(Pr,B).

The exact metalevel representation of object-level clauses will be further defined by
body, which it can be assumed selects a clause from the object-level program Pr,
whose head matches with A and returns in Body the body of that clause, importantly
with variables re-named as necessary. The interpreter does require that an object-level
clause body is represented by a metalevel list of metalevel representations of goals or
by the empty list if it is true at the object-level.

What is crucial is that object-level control is represented implicitly by metalevel
control. There is nothing in the interpreter that indicates that it is Prolog’s depth-first
left-to-right with backtracking control. We could build a tower of such meta-
interpreters and the control would remain in the underlying Prolog system (the
inviolate hyper-interpreter, introduced earlier). Indeed, if it were running on top of
GDC or some other non-Prolog logic language, it would inherit that language’s
control mechanism. We can note therefore that contrary to McCarthy’s intentions
with his Mini-Algol meta-interpreter, this metacircular interpreter does not fully
define the logic language, indeed in amalgamating language with metalanguage it
leaves it undefined.

The use of such a meta-interpreter comes when we do not wish to interfere with the
control, but wish to add some extra processing alongside inheriting the control
mechanism of the underlying language. The following meta-interpreter adds to the
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“vanilla” interpreter a mechanism for counting the number of object-level goal
reductions:

demo(Pr,[],N) :- N=0.
demo(Pr,[A|B],N) :-

body(Pr,A,Body), demo(Pr,Body,N1), demo(Pr,B,N2),
N is N1+N2.

Another use might be an interpreter that simply prints each goal as it is reduced. This
could thus be used as a simple tracer. A useful aspect of this interpreter is that in
making the object-level program explicit we can handle program-altering primitives
like assert and retract in a way which viewed from the metalevel does not violate
the logical basis of the program:

demo(Pr,[]).
demo(Pr,[assert(C)|Rest]) :- !,

insert(C,Pr,Pr1), demo(Pr1,Rest).
demo(Pr,[retract(C)|Rest]) :- !,

delete(C,Pr,Pr1), demo(Pr1,Rest).
demo(Pr,[A|B]) :- body(Pr,A,Body), demo(Pr,Body), demo(Pr,B).

Some measure of the extent to which a primitive is merely extra-logical as opposed to
metalogical may be gained by the ease with which it can be incorporated into a
metacircular interpreter. Prolog’s cut performs badly on this front, since it is certainly
not possible to represent an object-level cut by a metalevel cut; to implement it
correctly would require a large amount of the underlying control to be made explicit
in the meta-interpreter so that it can be manipulated. On the other hand, negation by
failure is trivial to implement in the meta-interpreter; it requires just the addition of
the following clause to the vanilla demo:

demo(Pr,[not(G)|Rest]) :- not(demo(Pr,[G])), demo(Pr,Rest).

The version of demo suggested by Bowen and Kowalski enables greater control to
be exercised at the metalevel over the object level:

demo(Prog, Goals) :- empty(Goals).
demo(Prog, Goals) :-

select(Goals, Goal, Rest),
member(Clause, Prog),
rename(Clause, Goals, VariantClause),
parts(VariantClause, Head, Body),
match(Head, Goal, Substitution),
join(Body, Rest, NewGoals1),
apply(Substitution, NewGoals1, NewGoals),
demo(Prog, NewGoals).

Here the selection of the particular object-level goal to reduce is determined by the
metalevel procedure select and match determines the sort of matching of goal
against clause head. It would be possible for select and join which adds the new
goals to the existing waiting goals to be written so that the control regime provided at
object-level is not Prolog’s depth-first left-to-right, but something else. For example,
if join joined the new goals to the rear of the rest of the goals and select chose the
first goal from the front, the result would be breadth-first expansion of the search tree.
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Although match could be written as GDC style input matching rather than full
unification, this interpreter still inherits Prolog’s underlying assumption of sequential
execution. Note for example, it is assumed that a complete set of goals to be executed
is passed sequentially from each goal reduction, with Prolog’s global substitution on
unification assumed.

8.4 Control Metalanguages

In the interpreters discussed above, control is fixed, whether inherited implicitly from
the underlying hyper-interpreter, or provided explicitly through procedures such as
select. However, another strand of work in metalevel reasoning concerns the
definition of separate languages for programming control. Confusingly, these
languages are also referred to as “metalanguages”. In the Bowen and Kowalski
[1982], brief mention is made of a four argument demo predicate, whose first two
arguments are the theorem and expression to be proved as above, but whose third
argument is an input control value and whose fourth argument is an unspecified
output. The idea of a proof argument to demo is expanded in a further paper by
Bowen and Weinberg [1985]. With the four-argument demo, we can extend the
reflection rules:

Pr |-M demo(A´,B´,C´,D´) A |-L,C B,D

A |-L,C B,D Pr |-M demo(A´,B´,C´,D´)

Clearly, the proof argument C here could have a very simple structure, consisting
perhaps of just a single word indicating that search should be depth-first or breadth-
first. The existence of infinite trees means that something may be provable when
proof is specified as breadth-first but not when depth-first. Gallaire and Lassere
[1982] and Dincbas and Le Pape [1984] have proposed considerably more complex
metalanguages for control in logic programming. Trinder et al [1998] introduce a
meta-programming strategy argument to parallelize lazy functional programming.

Although control metalanguages are expressed here in terms of a second input along
with the object-level program to an explicit meta-interpreter, the more common
situation is that the meta-interpreter they control is implicit and as with introspection
may be considered a virtual concept. Just as with introspection, what the language
designer chooses to make reifiable and what remains inviolate is not fixed. It depends
on the way in which the language is intended to be viewed. What a control
metalanguage may actually control depends on what the language designer who
makes the control metalanguage available chooses to reveal as controllable. For
example, whereas the control metalanguages for logic programming mentioned above
view logic programming in terms of an abstract resolution model, another proposed
control metalanguage for Prolog [Devanbu et  al., 1986] views Prolog in procedural
terms. Thus it gives the programmer the ability to alter the control pattern of Prolog
as expressed by the Byrd four port model [Byrd, 1980].
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As noted in Section 1.8, the idea of explicit metalevel control systems which may
themselves be programmed first arose in the context of production rule systems,
where it was possible that in a given situation more than one rule could fire. In this
case, the potential set of rules that can fire is termed the conflict resolution set and the
mechanism for picking one rule to fire from these is termed conflict resolution. Early
production systems had simple built-in implicit strategies, just as Prolog had a built-
in control order. OPS [Forgy and McDermott, 1977], for example, gives a preference
to the rule which matches with the most recent additions to working memory and then
to the rule with the greatest number of conditional elements. One of the first systems
to give an explicit control over selection of rules in conflict resolution was
TEIRESIAS [Davis and Buchanan, 1977; Davis, 1980], which gave the ability to
specify which rule to select by a set of metarules. As these metarules took the same
format as the object-level rules, the possibility of meta-metalevel rules to govern
them and so on existed, though Davis did not find any need for levels of rules above
the metalevel.

The idea of structuring knowledge into multiple layers, with separate layers of
metaknowledge for reasoning about control is now commonplace. The KADS
methodology for developing expert systems [Schreiber et al., 1993], for example,
specifies four distinct layers [van Harmelen and Balder, 1992]:

• Domain layer – knowledge about the specific domain of the expert system.

• Inference Layer – how to use the knowledge from the domain layer.

• Task layer – specifies control over the execution of the inference steps.

• Strategy layer – concerned with task selection: how to choose between various
tasks that achieve the same goal.

In intelligent agent systems, multiple layers of control are also a common form of
structuring [Malec, 1994]. For example, a system developed in Sweden to give
intelligent assistance to drivers [Morin et  al., 1992] has three layers:

• A process layer, which receives input from the environment and translates
continuous data to discrete values.

• An intermediate discrete response layer, which computes a response to events
forwarded from the process layer.

• An analysis layer, which deals with planning and reasoning.

We consider the idea of layering in agents in more detail in Chapter 10

Metalevel control systems can be divided into those that make use of domain
information and those that are purely concerned with the metalevel. In TEIRESIAS,
for example, a typical metarule will suggest that rules containing one specified
object-level property should be preferred over rules containing another: this is
domain level information. A medical expert system might, for example, have a
metarule that states that rules indicating the presence of an infectious disease should
always be tried before other rules. This sort of control rule may be considered
essentially as a structuring of the domain knowledge. An example of a metarule that
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does not involve domain knowledge would be one that stated that the rule with the
largest number of conditions to match should always be tried first. Metarules like
this, which simply specify a search order without reference to the domain or solely in
terms of the representation at the metalevel, may be considered essentially as a way
of structuring the interpreter. In a concurrent language, an important application of
this layering of interpreters is to have an interpreter which provides an abstract layer
of virtual parallelism [Burton and Huntbach, 1984]. The applications program
interpreted itself by a meta-interpreter maps the virtual parallelism onto a real parallel
architecture [Taylor et  al., 1987]. Annotations such as those we have described for
priority and codemapping may be considered as a simple metalanguage that breaks
through to the mapping meta-interpreter. Prolog’s cut may be considered a similar
sort of notation which breaks through the control-free model of clause resolution in
logic to a separate control mechanism, thus accounting for the difficulty of modeling
it in a meta-interpreter.

Clancey argues the case for keeping domain knowledge out of metalevel control rules
[Clancey, 1983], saying that doing so keeps systems easier to debug and modify,
ensures that they are reusable in a variety of domains and also enables systems to
easily generate explanations for their actions. He demonstrated this by extracting the
domain-independent control strategy that was implicit in the MYCIN medical expert
system [Shortliffe, 1976] and making it separate and explicit in a new expert system
called NEOMYCIN [Clancey and Letsinger, 1981].

8.5 A Classification of Metalevel Systems

Drawing on the discussion above, we can now attempt a classification of metalevel
systems. The classification is based on that suggested by van Harmelen [1991]. The
first class of metalevel systems may be termed definitional and uses a metalanguage
in order to define another language. This may be purely in order to give a semantics,
which is operational if the metalanguage is executable, but it may also be part of a
practical implementation. Symbolic processing languages are particularly suited to
implementing other languages. In artificial intelligence, building a higher-level
knowledge-representation language on top of a lower-level declarative language is a
common practice, recommended in textbooks on artificial intelligence programming
in both Lisp [Charniak et al., 1987] and Prolog [Bratko, 1986].

A second class may be termed enhanced metacircular interpreters. In this class the
metalanguage is the same as the object language and the purpose of the interpreter is
to provide an additional output alongside the interpretation. Among the additional
outputs that can be provided are certainty factors for use in expert systems
applications [Shapiro, 1983] and computation trees for use in debugging [Huntbach,
1987]. The chapter on meta-interpreters in Sterling and Shapiro’s Prolog textbook
[Sterling and Shapiro, 1986] is largely confined to this sort of meta-interpreter and
provides numerous examples. Use of this sort of meta-interpreter occurs mainly
among logic programmers because they are easy to write in logic languages: complex
issues like control and variable handling are simply passed implicitly from object
level to metalevel to the underlying system.
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The most varied class of metalevel systems, however, is that class of systems where
the aim is to separate control issues from declarative issues, but to provide the ability
to program both. This follows from Kowalski’s [1979] dictum “Algorithm = Logic +
Control.” Multiple layers of meta-interpreters means that it is possible to break down
control into metalogic and metacontrol and so on.

It might be possible to alter the flow of control in some procedural languages, but in
general these languages are such that logic and control are so intertwined as to be
inseparable. Declarative languages, however, are built around the idea that control is
left to the underlying system and the program is simply a declaration of the possible
set of solutions. This opens the question as to why the programmer should have any
control over control, since it is just an implementation detail. There is, however, a
group of languages that are neither procedural nor declarative. As suggested above,
production rule systems fall into this group and are the paradigm in which the issue of
metalevel control first received practical attention.

The reason why control arises as an issue in declarative languages is the question of
efficiency. In functional languages the only control issue is reduction order. The
Church–Rosser theorem [Barendregt, 1984] tells us that if it terminates, whatever
way we reduce a functional expression we will get the same result. It is possible for
one reduction order to return a result quicker than another is, or for one reduction
order to return a result while another does not terminate. Additional questions of
efficiency arise when implementing a functional language on a multi-processor
system when a decision has to be made as to whether the overhead of moving a
subexpression to another processor to be evaluated in parallel is outweighed by the
benefits of parallel execution. These considerations have led to suggestions for simple
control annotations controlling reduction order and parallel processing in functional
languages [Burton, 1987].

In logic languages, there is greater scope for order of reduction to affect efficiency.
Whereas in a functional language control is generally considered something for the
system to sort out, in logic languages there have been many proposals for methods to
give the user control over control. Smith and Genesereth [1985] analyze in detail the
effect that the ordering of conjunctive queries can have. The practical Prolog
programmer always has to be aware of Prolog’s left-to-right reduction order, writing
programs such that the optimal ordering of queries matches this built-in order.
However, the optimal order may only be determinable at run-time and often depends
on the mode in which a predicate is called. The lack of ability to change query order
dynamically is one of the reasons why Prolog’s multi-mode facility is rarely useful in
any but trivial programs. Metalevel annotations to give the programmer control over
query order were among the earliest suggestions to improve Prolog [Clark et  al.,
1982; Colmerauer et  al., 1982]. Cohen [1985] gives a metacircular interpreter to
implement Prolog II’s freeze. This is a metalevel procedure where freeze(X,G)
with X a variable and G a goal causes G to be removed from the list of goals waiting
for execution if X is unbound, but to be placed at the head of it as soon as X becomes
bound. Owen [1988] gives a metacircular interpreter that was used to allow flexible
goal ordering, which was used in the domain of protein topology. As we have seen, in
GDC there is a built-in suspension mechanism which works in a similar way to
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freeze and otherwise obviates the need for further goal ordering mechanisms until
we consider the speculative computation issues in Chapter 6.

Van Harmelen classifies metalevel systems on the basis on combinatorial soundness
and completeness. A metalevel inference system is combinatorially complete if it
derives all results derivable from the object level theory and combinatorially sound if
it derives only results derivable from the object level theory. Goal re-ordering will not
affect the soundness or completeness of a logic program (except that it may make
solutions obtainable that would be unobtainable due to being beyond infinite
branches). Metarules that prune the search tree by cutting out some clauses from
being considered will make a metalevel system incomplete, which is not a problem in
GDC, as it does not attempt to be complete. The unknown test in a guard is an
example of a metalevel feature that prunes the results possible. Prolog’s assert is an
example of a metalevel feature that introduces unsoundness. The distinction
commonly made in Prolog between “red cuts” and “green cuts” distinguishes those
usages of cut which affect the completeness of a Prolog program and those usages
where the cut is used purely to cut out search, which the programmer knows will not
lead to solutions and thus will not affect the completeness. The red/green distinction
could usefully be extended to other extra-logical notations: usages that affect the
soundness or completeness being termed red, those which do not being termed green.
A green assert in Prolog, for example, would be one which simply asserts a lemma
for efficiency reasons that could be proved form the existing clauses for the predicate.
A useful general rule in considering proposed metalevel control annotations would be
to accept only those that are capable of just green use.

Van Harmelen’s main classification of metalevel systems, however, concerns the
locus of action: the place in which the system is active at any one point in time. A
metalevel system with object-level inference is one where the main activity is in the
object-level interpreter. This covers those systems where the metalevel interpreter is
implicit and programmer control over it is limited to annotations, such as the various
examples above of Prolog control languages. A metalevel system with metalevel
inference is one where the computation takes place mainly in the metalevel
interpreter. This covers those systems where a full interpreter is available for
inspection and modification, and the attention is on this interpreter manipulating the
object-level program. An intermediate class covers those systems where the locus of
action shifts between the object-level and the metalevel. An example of the
intermediate class is those production systems where control jumps to the metalevel
for conflict resolution. In parallel logic programming, Pandora [Bahgat and Gregory,
1989] is an example of a mixed-level inference system. It behaves in a similar way to
the concurrent logic languages, but if it hits a deadlock, control jumps to a metalevel
deadlock handler [Bahgat, 1992] which resolves the situation by making a non-
deterministic choice.

The final distinction that van Harmelen makes is to distinguish between monolingual
and bilingual metalevel systems. A monolingual system is one where the language at
the metalevel is the same as at the object-level, in particular object-level variables are
mapped into metalevel variables. A bilingual system is one where the object-level
and metalevel languages are distinct, in particular object-level variables are
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represented by ground terms at the metalevel. Van Harmelen argues strongly in favor
of bilingual systems on the grounds of clarity. The argument is both informal,
considering the practical and conceptual difficulties of mixing the two levels, and
formal, after Hill and Lloyd’s analysis [1988] which suggested that semantics for
metalevel programs could not be derived while there was a confusion between
metalevel and object-level variables. Hill and Lloyd followed this by introducing a
logic language, Gödel [Hill and Lloyd, 1994], in which there are built-in object-level
and metalevel variables, with predicates at the metalevel operating on object-level
variables which replace the extra-logical predicates of Prolog. The counter-argument
is the simplicity of monolingual interpreters due to not having to make explicit that
which they do not change from the underlying system. Martens and de Schreye
[1995] argue that it is possible to come up with a formal semantics for monolingual
systems.

8.6 Some GDC Monolingual Interpreters

Having discussed the background behind the idea of meta-interpreters and given a
classification, we can now consider the subject on a practical level by considering a
few examples. The following is the vanilla meta-interpreter for GDC:

reduce(X=Y) :- X=Y.
reduce(Actor) :- otherwise

| behavior(Actor, Body), reducelist(Body).
reducelist([]).
reducelist([H|T]) :- reduce(H), reducelist(T).

Since GDC does not have built-in operations for manipulating the behaviors that form
a program, the object level behaviors must be represented in a form that explicitly
marks them out as object-level behaviors. The following would be the representation
for quicksort:

behavior(qsort([],Sorted),Body)
:- Body=[Sorted=[]].

behavior(qsort([Pivot|List],Sorted), Body)
:- Body=[part(List,Pivot,Lesser,Greater),

qsort(Lesser,Lsorted),qsort(Greater,Gsorted),
concatenate(Lsorted,[Pivot|Gsorted],Sorted)].

behavior(part([],Pivot,Lesser,Greater),Body)
:- Body=[ Lesser=[],Greater=[]].

behavior(part([Item|List],Pivot,Lesser,Greater),Body)
:- Pivot=<Item
| Body=[ Greater=[Item|Upper],part(List,Pivot,Lesser,Upper)].

behavior(part([Item|List],Pivot,Lesser,Greater),Body)
:- Item=<Pivot
| Body=[Lesser=[Item|Lower],part(List,Pivot,Lower,Greater)].

behavior(concatenate([],List,Total), Body)
:- Body=[Total=List].

behavior(concatenate([Item|List1],List2,Total), Body)
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:- Body=[Total=[Item|List],concatenate(List1,List2,List)].
Note that in this interpreter the concurrency of the object level maps implicitly onto
the concurrency of the metalevel, the concurrency of the second behavior for
reducelist giving the concurrency of the object level. Behavior commitments at the
object level map implicitly onto the commitment of the actor in the second behavior
of reduce. Object level guards represent metalevel guards. The unification primitive
at the object-level maps onto the unification primitive of the first behavior for
reduce. Further primitive operations could be covered in a similar way to unification
by adding behaviors to reduce.

A number of simple interpreters may be derived from the above meta-interpreter
[Safra and Shapiro, 1986]. The following, for example, uses the “short-circuit”
technique to report when execution of an actor has completed:

reduce(X=Y,Left,Right)
:- (X,Right)=(Y,Left).

reduce(Actor,Left,Right) :- otherwise
| behavior(Actor,Body),

reducelist(Body,Left,Right).
reducelist([],Left,Right)

:- Right=Left.
reducelist([H|T],Left,Right)

:- reduce(H,Left,Middle),
reducelist(T,Middle,Right).

The initial call to the interpreter will take the form :- reduce(Actor,done,Flag). The
message done is sent on the channel Flag only when execution of all actors spawned
by the actor execution has completed. Note the assumption in the first behavior for
reduce is that the component parts of the unification can be assumed to be done
simultaneously (atomic unification). If this is not the case, we need to ensure that the
short-circuit is closed only when the unification of the two object level messages has
been completed. In this case we will need to use a system primitive which performs
unification on its first two arguments and binds a flag channel given as its third
argument, the message being sent only when the unification is complete. Assuming
the message done is sent on the flag channel following unification, this will give us
the following:

reduce(X=Y,Left,Right)
:- unify(X,Y,Flag), close(Flag,Left,Right).

close(done,Left,Right) :- Left=Right.
Similar flag-message sending versions of any other system primitives will be
required.

The short-circuit technique can be used to give sequential execution. If we want a
pair of actors to execute sequentially, we will not start execution of the second until
execution of the first has completely finished. The following meta-interpreter
enforces sequential execution:

reduce(X=Y,Flag)
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:- (X,Flag)=(Y,done).
reduce(Actor,Flag)

:- otherwise
| behavior(Actor, Body),

reducelist(Body,Flag).

sequential_reducelist(List,done,Flag)
:- reducelist(List,Flag).

reducelist([],Flag)
:- Flag=done.

reducelist([H|T],Flag)
:- reduce(H,Flag1),

sequential_reducelist(T,Flag1,Flag).

The initial call is :- reduce(Actor,Flag) where Flag is an unbound channel.

In the GDC meta-interpreter above, the selection of a behavior to execute an actor
was mapped implicitly onto GDC’s own behavior selection mechanism. If, however,
we wish to override the built-in behavior-selection mechanism we must explicitly
program in a replacement behavior-selection mechanism. As an example, consider a
meta-interpreter where GDC’s indeterminism is resolved by offering a choice
between the behaviors, which may reduce an actor. Interpreters like this may be used
for debugging purposes letting the human user who is investigating different ways of
resolving the indeterminacy make the choice. Alternatively, we could have another
layer of meta-interpreter that selects between behaviors, essentially the same idea as
the conflict-resolution mechanism in production systems.

The following gives the top level:

reduce(X=Y)
:- X=Y.

reduce(Actor)
:- otherwise
| behaviors(Actor, Behaviors),

possbodies(Actor, Behaviors, Possibilities),
select(Actor, Possibilities, Body),
reducelist(Body).

reducelist([]).
reducelist([H|T])

:- reduce(H),
reducelist(T).

Here behaviors(Actor,Behaviors) is intended to give all behaviors for a possible
actor. The actor possbodies(Actor,Behaviors,Possibilities) will return in
Possibilities the bodies of all behaviors in Behaviors to which Actor may commit.
The actor select(Actor,Possibilities,Body) will select one of these possibilities.

In this conflict-resolution interpreter, it will be assumed, for convenience, that each
behavior in the list of behaviors given by behaviors contains distinct channels and
only behaviors with empty guards will be handled. Behaviors are represented by
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(Head, Body) pairs. Thus the program for non-deterministic merge would be
represented by:

behaviors(merge(X0,Y0,Z0), Behaviors)
:- Behaviors=[

(merge(X1,[],Z1),[Z1=X1]),(merge([],Y2,Z2),[Z2=Y2]),
(merge([H3|T3],Y3,Z3),[merge(T3,Y3,Z13), Z3=[H3|Z13]]),
(merge(X4,[H4|T4],Z4),[merge(X4,T4,Z14), Z4=[H4|Z14]])].

In order to gain a list of possible behavior bodies in possbodies, the OR-
parallelism of the object-level needs to be simulated by AND-parallelism at the
metalevel as described in Chapter 6. The behavior selection mechanism is made
explicit, involving an explicit call to a match actor which performs the matching
which is done implicitly in GDC execution. In this case, match as well as receiving
messages in the behavior head also sends on a flag channel the message true if the
match succeeds and false otherwise:

possbodies(Actor, [(Head,Body)|Rest], Poss)
:- match(Actor, Head, Flag),

possbodies(Actor, Rest, RPoss),
addposs(Flag, Body, RPoss, Poss).

possbodies(Actor, [], Poss) :- Poss=[].

The actor addposs simply adds a behavior body (with channels appropriately
bound) to the list of possibilities if matching succeeds:

addposs(false,_,RPoss,Poss)
:- Poss=RPoss.

addposs(true,Body,RPoss,Poss)
:- Poss=[Body|Poss].

Although it would be possible to provide a version of match as a system primitive, it
may be programmed directly:

match(X, Y, V) :- unknown(Y) | Y=X,V=true.
match(X, Y, V) :- X=Y | V=true.
match(X, Y, V) :- X=/=Y | V=false.
match(X, Y, V) :- list(X), list(Y) | matchlist(X, Y, V).
match(X, Y, V) :- tuple(X), tuple(Y)

| X=..LX, Y=..LY, matchlist(LX, LY, V).

matchlist([], [], V) :- V=true.
matchlist([H1|T1], [H2|T2],V)

:- match(H1, H2, VH), matchlist(T1, T2, VT) and(VH, VT, V).
matchlist(X, Y, V) :- unknown(Y) | Y=X, V=true.

and(true, true, V) :- V=true.
and(false, _, V) :- V=false.
and(_, false, V) :- V=false.

While this meta-interpreter is more complex than previous ones, a large amount of
the object-level GDC still maps implicitly onto metalevel GDC. In particular there is
no direct reference to the scheduling of actors or the suspension mechanism. The
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scheduling of the object-level GDC is whatever is provided by the metalevel GDC. A
suspension in the object-level GDC will map into a suspension of the metalevel GDC
in the match actor of the meta-interpreter, when X is unbound but Y is bound so the
guards X==Y and X=/=Y are both suspended until X becomes sufficiently bound for
them to resolve. It is assumed that select will only present a menu of possible bodies
to resolve an actor when there are no suspensions for that actor. Note that it is a
context free selection as the set of actors awaiting execution remains implicit, so it is
not an explicit object that can be viewed when making a behavior selection. The
order in which the selection menus are presented will in effect be the scheduling
order, which is not under user control.

A further development would be to introduce an explicit scheduling list. This could
be used to give a meta-interpreter that implements the actor priorities of Chapter 6.
The following meta-interpreter does this. The idea is that the top-level actor network
is:

:- reduce(Actor/Priority,S), scheduler(S)

where S is a stream of messages of the form req(Priority,Go). These messages are
generated by the reduce actor and consumed by the scheduler actor. As generated
Go is unbound in the messages. The scheduler binds these channels in the order
determined by Priority. It is assumed that a behavior body consists of a list of
actor/priority pairs. A priority could be a constant or a channel which is bound during
execution.

The scheduler actor will keep an explicit list of priority requests, which will in effect
form the explicit scheduling list. The wait actor will ensure that behavior selection is
suspended until allowed by the scheduler since it cannot proceed until the request
channel is bound. Streams of requests are merged using conventional stream merging:

reduce(X=Y, S) :- X=Y, S=[].
reduce(Actor/Priority, S)

:- S=[req(Priority,Go)|S1],
behaviors(Actor,Behaviors),
wait(Go,Actor,Behaviors,Body),
reducelist(Body,S1).

reducelist([],S) :- S=[].
reducelist([H|T],S)

:- reduce(H,S1), reducelist(T,S2), merge(S1,S2,S).

wait(go,Actor,Behaviors,Body)
:- possbodies(Actor,Behaviors,Possibilities),

select(Actor,Possibilities,Body).
This interpreter is deficient because there are no limits on the scheduler. The
scheduler could just authorize every actor to proceed to behavior selection as soon as
it receives the actor’s request. This defeats the purpose of the interpreter, since given
a limited number of processors scheduling would default to whichever order is
decided by the underlying system. In order to give user-defined scheduling we need
to authorize only enough actors to keep the processors busy. To do this, the scheduler
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would need to know how many of the current set of actors are suspended on all their
possible messages and thus not consuming any processor resources. This could be
done with a version of match, but would require an explicit handling of suspensions
rather than the implicit mapping of objectlevel suspensions to metalevel suspensions.
Rather than suspend, match would terminate and return a list of channels and
messages to which they must be bound for the actor to be woken.

An interpreter that explicitly handled suspensions could either use busy-waiting,
continually testing whether a channel whose value is required has become bound, or
non-busy-waiting, in which a list of suspended actors is associated with each unbound
channel and the actors woken when the channel becomes bound. Such a meta-
interpreter would be considerably more complex than the simple meta-interpreters
with which we started, but it still relies on implicit mapping from metalevel to object
level of store allocation and garbage collection.

Another variant of the meta-interpreter that explicitly gives a selection between
behaviors to resolve an actor is one that illustrates the effect of choosing each
possible behavior. This is referred to as an all-solutions interpreter since it will give
all possible bindings of some channel in an actor. For a more detailed discussion of
this problem see [Ueda, 1987]. The way the all-solutions interpreter below works is
to maintain a list of actors and a list of partial solutions. When an actor may be
resolved in one of several ways a duplicate of these lists, or continuation, is made to
represent the position in the computation that would be obtained by choosing each
alternative. The continuation will rename each channel (so that, for example, the list
[X,X,Y] would become [X1,X1,Y1]), we will assume we have a primitive copy
which creates such a copy with renamed channels. The list of possible solutions is
obtained by appending together the list of solutions obtained from each continuation.

allsols(Actor,TermSols) :- reduce([Actor],[Term],Sols).

reduce([],Terms,Sols) :- Sols=Terms.
reduce([X=Y|Actors],Terms,Sols)

:- X=Y, reduce(Actors,Terms,Sols).
reduce([Actor|Actors],Terms,Sols)

:- otherwise
| behaviors(Actor,Behaviors),

reducewith(Actor,Actors,Behaviors,Terms,Sols).

reducewith(Actor,Actors,[(Head,Body)|Rest],Terms,Sols)
:- match(Actor,Head,Flag),

reduceon(Flag,Actors,Body,Rest,Terms,Sols1),
reducewith(Actor,Actors,Rest,Terms,Sols2),
append(Sols1,Sols2,Sols).

reducewith(Actor,Actors,[],Terms,Sols) :- Sols=[].
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reduceon(true,Actors,Body,Rest,Terms,Sols)
:- append(Body,Actors,Actors1),

copy([Terms,Actors1],[Terms2,Actors2]),
reduce(Actors2,Terms2,Sols).

reduceon(false,Actors,Body,Rest,Terms,Sols) :- Sols=[].

The effect of a call allsols(Actor,Term,Sols) is to bind Sols to a list of the different
instances of Term given by all possible evaluations of Actor. For example, a call
allsols(merge([a,b],[c],X),X,Sols) will cause Sols to become bound to
[[a,b,c],[a,c,b],[c,a,b]], assuming we have the representation of non-deterministic
merge given previously.

In the interpreter reducewith matches an actor against the heads of each of the
behaviors for that actor. If matching succeeds, reduceon sets up a reduce actor to
construct all solutions which involve this particular matching. Note that the code
interpreted by this interpreter is limited to examples which do not require any
suspensions since reduceon which initiates solution of the remaining actors remains
suspended until matching has completed and sent the message true or false on the
channel Flag. Since matching does not bind channels in the actor, it is safe to leave
the construction of a continuation until after matching has completed successfully,
thus avoiding unnecessary copying for cases where matching fails.

8.7 GDC Bilingual Interpreters

The problems with monolingual interpreters became more apparent in Section 8.6.
The mapping of object-level variables to metalevel variables resulted in the need to
introduce a variety of extra-logical primitives, culminating in copy in the all-
solutions interpreter for general logic programs. The problem is that a single GDC
variable with its single-assignment property cannot be used to model a variable in a
logic language with non-deterministic backtracking as such a variable can be
reassigned its value on backtracking. What is needed is a separate representation of
object-level variables by ground terms at the metalevel, that is a bilingual interpreter.

In fact we have already seen a range of bilingual interpreters in Chapter 6. Search
programs specifically for the 8-puzzle were generalized generic search programs that
could be used for any system where a state is rewritten non-deterministically by a set
of rewrite rules. We could therefore consider the rules by which the successors to a
state are generated in the successors actor in Chapter 6 to be the object level
program and the various search programs to be metalevel programs.

While the object-level rules in Chapter 6 could be simple rules for showing the
possible changes of state in something like the 8-puzzle, they could equally well be a
complete set of rewrite rules specifying how a set of sentences in logic could be
changed using resolution. This would then make these rules themselves a
metaprogram, with the logic sentences being the object-level programs and the search
programs meta-metaprograms. If the search program used involved priorities and
these were implemented using a meta-interpreter as suggested above, this interpreter
would be a meta-meta-metalevel interpreter for the logic sentences. Note that this



266 Chapter 8

four-leveled layering of interpreters corresponds to the proposed four layers in the
KADS methodology for knowledge-based systems development noted previously.

Below is a simple implementation of Chapter 6’s successors for the case where the
state stored in a node in the search tree is a list of Goals in a Prolog-like language,
together with an environment giving the values of variables in the Goals. It is
assumed that variables in the Goals are represented by ground terms in GDC:

successors(state([Goal|Goals],Env), Succs)
:- Goal=..[Functor|Args],

clauses(Functor,Clauses),
expandGoal(Args,Goals,Env,Clauses,Succs).

expandGoal(Args,Goals,Env,[],Succs) :- Succs=[].
expandGoal(Args,Goals,Env,[clause(Head,Body,Vars)|Clauses],Succs)

:- append(Vars,Env,Env2),
unify(Args,Head,Env2,Env1,Flag),
expandGoal1(Flag,Args,Goals,Body,Env,Env2,Clauses,Succs).

expandGoal1(false,Args,Goals,Body,Env,Env1,Clauses,Succs)
:- expandGoal(Args,Goals,Env,Clauses,Succs).

expandGoal1(true,Args,Goals,Body,Env,Env1,Clauses,Succs)
:- append(Body,Goals,Goals1),

expandGoal(Args,Goals,Env,Clauses,Succs1),
Succs=[state(Goals1,Env1)|Succs1].

Here, the actor clauses returns a representation of the clauses associated with the
input goal name in the form of a list of triples. Each of these contains the head
arguments in list form, the body of the clause and a separate environment for the
variables in the clause (assuming a mechanism to make these fresh variables) each
linked with the value unbound. Clearly the issol required in the search programs in
Chapter 6 returns a solution found when the list of outstanding goals becomes empty:

issol(state([],Env),Flag) :- Flag=true.
issol(state([Goal|Goals],Env),Flag) :- Flag=false.

It can be seen that this version of successors always takes the first goal from the
list of outstanding goals and appends the body of any clause which it matches to the
front of the remaining goals. Therefore the goal ordering of Prolog is built-in. The
clause ordering is not, however, built-in since it will depend on the order in which the
search tree is searched. The search order also is not built-in and is determined at the
level of the search program.

The GDC code for unify sends true in its fifth argument if its first and second
arguments unify with the variable bindings of the environment of its the third
argument, giving the updated variable bindings as output in the fourth argument. If
unification is not possible, false is returned in the fifth argument, otherwise true is
returned here. This flag value is passed into expandGoal1, which adds a successor
state to the list of successor states if a successful unification was achieved.
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If a variable at the object level is represented by the ground term var(<name>)
where <name> is some constant unique for each separate variable and environment
is a list of <name>/<value> pairs, the following code will implement unify:

unify([H1|T1],[H2|T2],IEnv,OEnv,Flag)
:- unify(H1,H2,IEnv,MEnv,Flag1),

unify1(Flag1,T1,T2,MEnv,OEnv,Flag).
unify(X1,X2,IEnv,OEnv,Flag) :- X1==X2 | OVars=IVars, Flag=true.
unify(var(A),var(B),IEnv,OEnv,Flag)

:- lookup(A,IEnv,AVal), lookup(B,IEnv,BVal),
unifyvars(A,B,IEnv,AVal,BVal,OVars,Flag).

unify(var(A),X2,IEnv,OEnv,Flag) :- X2=/=var(B)
| lookup(A,IEnv,AVal), setvar(A,AVal,X2,IVars,OVars,Flag).

unify(X1,var(A),IEnv,OEnv,Flag) :- X1=/=var(B)
| lookup(A,IVars,AVal), setvar(A,AV,X1,IEnv,OEnv,Flag).

unify(X1,X2,IEnv,OEnv,Flag) :- X1=/=var(A), X2=/=var(B), X1=/=X2
| Flag:=false, OEnv=IEnv.

unify1(false,X1,X2,IEnv,OEnv,Flag) :- Flag=false.
unify1(true,X1,X2,IEnv,OEnv,Flag)

:- unify(X1,X2,IEnv,OEnv,Flag).

unifyvars(A,B,IEnv,unbound,BVal,OEnv,Flag) :- BVal=/=unbound
| bind(A,BVal,IEnv,OEnv), Flag=true.

unifyvars(A,B,IEnv,AVal,unbound,OEnv,Flag) :- AVal=/=unbound
| bind(B,AVal,IEnv,OEnv), Flag=true.

unifyvars(A,B,IEnv,unbound,unbound,OEnv,Flag) :- A<B
| bind(B,var(A),IEnv,OEnv), Flag=true.

unifyvars(A,B,IVars,unbound,unbound,OEnv,Flag) :- A>B
| bind(A,var(B),IEnv,OEnv), Flag=true.

unifyvars(A,B,IEnv,AVal,BVal,OEnv,Flag)
:- AVal=/=unbound, BVal=/=unbound
| unify(AVal,BVal,IEnv,OEnv,Flag).

lookup(A,[B/Val|Env],AVal) :- A==B | AVal=Val.
lookup(A,[B/Val|Env],AVal) :- A=/=B | lookup(A,Env,AVal).

setvar(A,unbound,X,IEnv,OEnv,Flag)
:- Flag=true, bind(A,X,IEnv,OEnv).

setvar(A,var(B),X,IEnv,OEnv,Flag)
:- lookup(B,IVars,BVal), setvar(B,BVal,X,IEnv,OEnv,Flag).

setvar(A,V,X,IEnv,OEnv,Flag) :- V==X
| Flag=true, OEnv=IEnv.

setvar(A,[HV|TV],[HX|TX],IEnv,OEnv,Flag)
:- unify(HV,HX,IEnv,MEnv,Flag1),

unify1(Flag1,TV,TX,MEnv,OEnv,Flag).
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setvar(A,[H|T],X,IEnv,OEnv,Flag) :- X=/=[HX|TX]
| Flag=false, OEnv=IEnv.

setvar(A,V,[HX|TX],IEnv,OEnv,Flag) :- V=/=[HV|TV], V=/=var(B)
| Flag=false, OEnv=IEnv.

setvar(A,V,X,IEnv,OEnv,Flag) :- X=/=[HX|TX], X=/=V, V=/=var(B)
| Flag=false, OEnv=IEnv.

bind(A,AVal,[B/BVal|Env],Env1) :- A==B
| Env1=[A/AVal|Env].

bind(A,AVal,[B/BVal|Env],Env1) :- A=/=B
| bind(A,AVal,Env,Env2), Env1=[B/BVal|Env2].

The cost of the bilingual interpreter in having to implement unification completely
rather than inheriting any unification from the underlying system is apparent.
However, the division into layers means that once we have constructed this layer
implementing the resolution and unification, it may be incorporated with any of the
search programs in Chapter 6 which will add more control and also give the precise
nature of the output. For example, it could be used to give a single solution or all
solutions. One point to note is that the bilingual nature of the interpreter means that it
avoids use of extra-logical primitives, such as the copy that was needed in our all-
solutions interpreter above and is also needed in the OR-parallel Prolog interpreter
proposed by Shapiro [1987]. The importance of this will become more apparent when
partial evaluation of meta-interpreters is considered in Chapter 9.

In order to duplicate exactly Prolog’s search order though, a search program is
required that searches in depth-first order on demand, which was not given in Chapter
6. The following version of search will do this:

search(State,[],OutSlots) :- OutSlots=[].
search(State,[Slot|InSlots],OutSlots)

:- issol(State,Flag),
expand(Flag,State,[Slot|InSlots],OutSlots).

expand(true,State,[Slot|InSlots],OutSlots)
:- solution(State,Slot), OutSlots=InSlots.

expand(false,State,InSlots,OutSlots)
:- successors(State,States),

branch(States,InSlots,OutSlots).
branch([],InSlots,OutSlots) :- OutSlots=InSlots.
branch([H|T],InSlots,OutSlots)

:- search(H,InSlots,MidSlots),
branch(T,MidSlots,OutSlots).

Here the second input to search is a list of unbound channels or slots. Prolog-like
sequential clause will occur because no expansion of the right branch of the search
tree will take place until search of the left branch has completed and failed to fill the
slots available by binding them. An OR-parallel effect can be gained if this condition
is relaxed and search of the right-branch is allowed when it is not known whether a
solution will be found in the left branch. Adding the following clause:
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search(State,InSlots,OutSlots)
:- unknown(InSlots)
| issol(State,Flag), expand(Flag,State,InSlots,OutSlots).

will achieve this, since it means that a node in the search tree will be expanded when
the binding status of the slots passed to it is unknown.

8.8 An Interpreter for Linda Extensions to GDC

As a final example of a meta-interpreter for a guarded definite clause language, an
interpreter is described which adds Linda extensions [Gelernter, 1985] to GDC.
According to Gelerntner, the Linda notation is a set of simple primitives, which may
be added to any programming language to introduce concurrency into it. The basis of
these notations is that a dynamic database of tuples exists. Actors communicate by
asserting, reading and retracting tuples from this database, it may therefore be
considered a blackboard system [Engelmore and Morgen, 1988]. The Linda
extensions are eval(P), which sets up P as an actor, out(T) which adds the tuple T to
the database, in(T) which removes the tuple T from the database and rd(T) which
reads the tuple T from the database. In the case of in and rd, the tuple argument may
contain unbound variables and there will be a search for a matching tuple in the
database; when a match is found the variables in the argument will be bound to the
matching values. If no match is found for in or rd the actor which made the call is
suspended until another actor adds a matching tuple using out, the suspended in or rd
call is then evaluated and the actor which made the in or rd call restarted.

The reason for paying particular attention to implementing Linda extensions to GDC
is that Linda has been proposed as a competitor [Carriero and Gelernter, 1989] to
GDC. It has achieved popularity in use as a concurrent programming paradigm,
though this may be because it can be grafted onto existing languages and thus there is
less of a barrier to using it than changing to a novel concurrent language.
Nevertheless, the simplicity of the conceptual model of Linda has led to it being put
forward as another way of introducing concurrency into logic programming [Brogi
and Cincanini, 1991]. The use of interpreters moves away from “language wars” to
the idea of multi-paradigm programming in which different parts of a program may
be expressed in whichever paradigm is most suitable for them. Correspondingly,
GDC equipped with a range of interpreters is a multi-paradigm language. The next
section shows how functional programming may be embedded in GDC using an
interpreter while in Chapter 9 an interpreter for an imperative language is given.

Linda extensions may be added to GDC by using an interpreter that passes on a
stream of the database handling commands to a database-handling actor. Each actor
that is interpreted will produce a stream of requests to the database. Non-primitive
actors will merge the streams from the subactors into which they reduce. The Linda
primitives will produce a stream consisting of a single database request. Other
primitives will produce an empty stream. Since in GDC all actors are concurrent,
there is no need for an explicit eval primitive. The following is the interpreter:
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reduce(X=Y,S) :- X=Y, S=[].
reduce(in(M),S) :- S=[in(M)].
reduce(rd(M),S) :- S=[rd(M)].
reduce(out(M),S) :- S=[out(M)].
reduce(Actor,S)

:- otherwise
| behavior(Actor,Body), reducelist(Body,S).

reducelist([], S) :- S=[].
reducelist([H|T],S)

:- reduce(H, S1), reducelist(T,S2), merge(S1,S2,S).
The top level actor network would be

:- reduce(Actor,Stream), database(Stream).
The database handler needs to keep two lists of tuples. One will be tuples currently in
the database. The other will be a list of in and rd requests that are suspended waiting
for a tuple to be added. When a tuple is added it is matched against all the suspended
in and rd requests. If it matches a suspended in request, it is not taken any further
since this in request will cause it to be removed from the database. The matching used
is similar to the matching we used in the meta-interpreters previously, except that we
need to overcome the problem that matching could fail after binding some channels.
The interpreter is monolingual, so if the binding took place it could not be undone if
matching failed later. We reduce the problem by using a version of match which
rather than bind any channels returns a list of channels which would be bound and
values to which they would be bound if the matching succeeds. If matching does
succeed, these bindings take place. This gives the following as the complete database
handler:

// Handle an out message by checking against all waiting in and rd
// messages. If it has not been matched with a waiting in message,
// the tuple is added to the database of tuples.
database([out(M)|S],Waits,Tuples)

:- checkwaits(M, Waits,OutWaits,Found),
addtuple(Found,S,M,OutWaits,Tuples).

// Handle an in message by checking against the database of
// tuples. If there are no matches, the in message is added to the
// list of waiting in and rd requests.
database([in(M)|S],Waits,Tuples)

:- checktuples(M,Tuples,OutTuples,Found),
addwait(Found,S,M,Waits,OutTuples).

// Handle a rd message similarly to an in message.
database([rd(M)|S],Waits,Tuples)

:- check(M,Tuples,Found), addrd(Found, S, M, Waits, Tuples).

addtuple(no,S,M,Waits,Tuples)
:- database(S,Waits,[M|Tuples]).

addtuple(yes,S,M,Waits,Tuples)
:- database(S,Waits,Tuples).
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addwait(no,S,M,Waits,Tuples)
:- database(S,[in(M)|Waits],Tuples).

addwait(yes,S,M Waits,Tuples)
:- database(S,Waits,Tuples).

addrd(no,S,M,Waits,Tuples)
:- database(S,[rd(M)|Waits],Tuples).

addrd(yes,S,M,Waits,Tuples)
:- database(S,Waits,Tuples).

// Check a tuple against waiting in and rd requests. If it is
// matched successfully against an in request Found is bound to
// “yes”, the in request is removed from the list of waiting
// requests and no further checking is done. If it is successfully
// matched against a waiting rd request, the request is removed
// but checking against further requests continues. If all
// requests are checked and no successful matching with an in
// request occurs, Found is bound to “no”.
checkwaits(M,[in(N)|Waits],OutWaits,Found)

:- match(M,N,Flag,Matches),
isinmatch(Flag,Matches,M,N,Waits,OutWaits,Found).

checkwaits(M,[rd(N)|Waits],OutWaits,Found)
:- match(M,N,Flag,Matches), 

isrdmatch(Flag,Matches,M,N,Waits,OutWaits,Found).
checkwaits(M,[],OutWaits,Found)

:- Found=no, OutWaits=[].

isinmatch(true,Matches,M,N,Waits,OutWaits,Found)
:- Found=yes, domatches(Matches), OutWaits=Waits.

isinmatch(false,Matches,M,N,Waits,OutWaits,Found)
:- checkwaits(M,Waits,OutWaits1,Found),

 OutWaits=[in(N)|OutWaits1].

isrdmatch(true,Matches,M,N,Waits,OutWaits,Found)
:- domatches(Matches), checkwaits(M,Waits,OutWaits,Found).

isrdmatch(false,Matches,M,N,Waits,OutWaits,Found)
:- checkwaits(M,Waits,OutWaits1,Found),

 OutWaits=[rd(N)|Outwaits1].

// Check an in request against the database of tuples.
// If a match is found the matching tuple is taken from the
// database of tuples and Found is bound to “yes”. Otherwise
// Found is bound to “no”.
checktuples(M,[N|Tuples],OutTuples,Found)

:- match(N,M,Flag,Matches),
ismatch(Flag,Matches,M,N,Tuples,OutTuples,Found).
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checktuples(M,[],OutTuples,Found)
:- Found=no, OutTuples=[].

// Perform the channel binding if matching succeeds.
ismatch(true,Matches,M,N,Tuples,OutTuples,Found)

:- domatches(Matches), OutTuples=Tuples, Found=yes.
ismatch(false,Matches,M,N,Tuples,OutTuples,Found)

:- checktuples(M,Tuples,OutTuples1,Found),
OutTuples=[N|OutTuples1].

domatches([Y/X|Matches]) :- Y=X, domatches(Matches).
domatches([]).

// Check a rd request against the database of tuples, bind Found
// to “yes” if a match is found, to “no” otherwise.
check(M,[N|Tuples],Found)

:- match(N,M,Flag,Matches),
isfound(Flag,Matches,M,Tuples,Found).

check(M,[],Found) :- Found=no.

isfound(true,Matches,M,Tuples,Found)
:- Found=yes, domatches(Matches).

isfound(false,Matches,M,Tuples,Found) :- check(M,Tuples,Found).

// A version of match which binds V to “true” if matching
// succeeds, “false”otherwise and which returns a list of
// channel bindings to be performed only if the complete match
// succeeds.
match(X,Y,V,Matches) :- unknown(Y) | Matches=[Y/X], V=true.
match(X,Y,V,Matches) :- X==Y | V=true, Matches=[].
match(X,Y,V,Matches) :- X=/=Y | V=false, Matches=[].
match(X,Y,V,Matches) :- list(X), list(Y)

| matchlist(X,Y,V,Matches).
match(X,Y,V,Matches) :- tuple(X), tuple(Y)

| X=..LX, Y=..LY, matchlist(LX,LY,V,Matches).

matchlist([],[],V,Matches) :- V=true, Matches=[].
matchlist([H1|T1],[H2|T2],V,Matches)

:- match(H1,H2,VH,Matches1), matchlist(T1,T2,VT,Matches2),
andp(VH,VT,V), merge(Matches1,Matches2,Matches).

matchlist(X,Y,V,Matches) :- unknown(Y)
| Matches=[Y/X], V=true.

andp(true,true,V) :-V=true.
andp(false,_,V) :- V=false.
andp(_,false,V) :- V=false.
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The behavior representation below will reduce the Dining Philosophers problem
(Section 4.12) in a way similar to that described in [Carriero and Gelernter, 1989].
The idea is that a chopstick available for use is represented by a tuple in the database.
When a philosopher actor wishes to use a chopstick, an in command for the chopstick
is issued. If the chopstick is already in use by another philosopher the philosopher
actor will suspend until that other philosopher has finished with the chopstick and
issued an out command on it, putting it into the tuple database and awakening the in
command. To avoid deadlock, only four philosophers are allowed in the dining room
at any time.  Initially, this is represented by having four meal tickets in the database.
A philosopher must issue an in command on a meal ticket and receive it before
entering the dining room, the ticket is put out again when the philosopher finishes
eating. Philosophers are represented by the indices of the chopsticks they use to eat.

behavior(hungryphil(hungry,F1,F2),Body)
:- Body=[in(ticket(T)),enteringphil(T,F1,F2)].

behavior(enteringphil(ticket,F1,F2),Body)
 :-Body=[in(chopstick(F1,T1)),in(chopstick(F2,T2)),

eatingphil(T1,T2,F1,F2)].
behavior(eatingphil(chopstick,chopstick,F1,F2), Body)

:- Body=[eat(E), exitingphil(E,F1,F2)].
behavior(exitingphil(full,F1,F2), Body)

:- Body=[out(chopstick(F1,chopstick)),
out(chopstick(F2,chopstick)),
out(ticket(ticket)), thinkingphil(F1,F2)].

behavior(thinkingphil(F1,F2), Body)
:- Body=[think(H),hungryphil(H,F1,F2)].

behavior(init, Body)
:- Body=[out(chopstick(1,chopstick)),

out(chopstick(2,chopstick)),out(chopstick(3,chopstick)),
out(chopstick(4,chopstick)),out(chopstick(5,chopstick)),
out(ticket(ticket)),out(ticket(ticket)),
out(ticket(ticket)),out(ticket(ticket)),
thinkingphil(1,2),thinkingphil(2,3),thinkingphil(3,4),
thinkingphil(4,5),thinkingphil(5,1)].

Note that here it has been necessary to include explicit sequencing in the interpreted
program. For example a meal ticket is represented by the 1-tuple ticket(ticket) rather
than the 0-tuple ticket.  A message in(ticket(T)) will bind T to ticket when a tuple
ticket(ticket) is in the database. The actor enteringphil(T,F1,F2) will suspend until
T is bound. Without this sequencing the calls in(ticket) and enteringphil(F1,F2)
would proceed in parallel. That is, a philosopher would not wait for the meal ticket to
become available. Similarly, the n-th chopstick is represented by the tuple
chopstick(n,chopstick) rather than just chopstick(n). It is assumed that think(H)
will bind H to hungry after a suitable interval of time and eat(E) will similarly bind
E to full.

A more complex form of the interpreter would make the sequencing implicit, using a
similar technique to that we used to introduce sequentiality previously.  In this case, it
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is necessary to introduce the explicit primitive eval for the cases where we want a
concurrent actor to be spawned:

reduce(X=Y,S,Flag) :- unify(X,Y,Flag), S=[].
reduce(in(M),S,Flag) :- S=[in(M,Flag)].
reduce(rd(M),S,Flag) :- S=[rd(M,Flag)].
reduce(out(M),S,Flag) :- S=[out(M,Flag)].
reduce(eval(T),S,Flag) :- reduce(T,S,_), Flag=done.
reduce(Actor,S,Flag) :- otherwise

| behavior(Actor,Body), reducelist(done,Body,S,F).

reducelist(Flag1,[],S,Flag2) :- S=[], Flag2=Flag1.
reducelist(done,[H|T],S,Flag)

:- reduce(H,S1,Flag1),
reducelist(Flag1,T,S2,Flag),
merge(S1,S2,S).

Note that the Flag channel is added to the in, rd and out messages passed to the
database handler. It is assumed that the database handler will bind Flag to done
when the operation is completed. In the case of in and rd messages if there is no
matching tuple in the database, the requests will be queued as before, each with its
associated flag and the flag eventually will be bound when a matching tuple is added
by an out message.

Using this interpreter the program for the dining philosophers is:

behavior(hungryphil(F1,F2),Body)
:- Body=[in(ticket),enteringphil(F1,F2)].

behavior(enteringphil(F1,F2),Body)
:- Body=[in(chopstick(F1)),in(chopstick(F2)),eatingphil(F1,F2)].

behavior(eatingphil(F1,F2),Body)
:- Body=[eat,exitingphil(F1,F2)].

behavior(exitingphil(F1,F2),Body)
:- Body=[out(chopstick(F1)),out(chopstick(F2)),out(ticket),

thinkingphil(F1,F2)].
behavior(thinkingphil(F1,F2),Body)

:- Body=[think,hungryphil(F1,F2)].
behavior(init,Body)

:- Body=[out(chopstick(1)), out(chopstick(2)),
out(chopstick(3)), out(chopstick(4)),

 out(chopstick(5)), out(ticket), out(ticket), out(ticket),
 out(ticket), eval(thinkingphil(1,2)),
 eval(thinkingphil(2,3)), eval(thinkingphil(3,4)),
 eval(thinkingphil(4,5)), eval(thinkingphil(5,1))].

8.9 Parallelization via Concurrent Meta-interpretation

As the Linda extension interpreter indicates, the underlying parallelism in GDC may
be used through interpreters to provide parallelism in a form which is not directly



Meta-Interpretation 275

provided in GDC itself. Huntbach, [1991] gives an interpreter which models in GDC
the explicit message-passing parallelism of Occam, the transputer language based on
Dijkstra’s CSP [Dijkstra, 1975]. But the implicit parallelism in GDC may be used to
realize parallelism which exists implicitly in another language, through the use of a
GDC interpreter for that language.

Landin’s usage of lambda calculus as a metalanguage for describing the semantics of
Algol and the more direct basis of the functional languages on lambda calculus was
noted in Section 8.1. Landin proposed the abstract SECD machine to evaluate lambda
calculus expressions. The SECD machine reifies much of the control aspects of
lambda calculus evaluation by using explicit stacks, which can be seen as a sacrifice
of generality for the sake of efficiency. Because the control of the SECD machine is
explicit, it does not parallelize without modification.  McCarthy’s Eval/Apply
interpreter [McCarthy, 1960] is more general. As a Lisp-like interpreter for Lisp, it
can be seen as another part of his interest in meta-interpreters discussed with respect
to Algol, in this case mapping the recursion of the functional language implicitly onto
the recursion of the interpreter. A GDC version of the Eval/Apply interpreter will
automatically parallelize lambda calculus evaluation, since the control is minimally
specified. Incorporation of such an interpreter for those problems where the power of
functional programming, particularly higher order functions, is useful, may be seen as
an alternative to developing a new language which explicitly combines logic and
functional programming [Belia and Levy, 1986].

The lambda calculus interpreter given below is based on one given by Field and
Harrison [1988]. Variables are stored in an explicit environment, similar to the
environments used to build an interpreter for a backtracking logic language in Section
8.7. The beta-reduction mechanism is implemented by adding the bindings for the
bound variable to the environment rather than actual textual substitution. Correct
binding of variables is achieved by the standard method of constructing a closure in
which an abstraction is linked with an environment giving values for any free
variables within it.

The interpreter works for expressions in lambda calculus, with λx.E, where E is any
expression, represented by lambda(x,E), the expression E1 E2, that is E1 applied to
E2 represented by apply(E1,E2) and the variable x represented by vbl(x). Arithmetic
and other built-in operators are represented in their curried form by op(p) where p is
the operator, or op1(p,E) where E is an expression for the partially applied form:

eval(apply(E1,E2),Env,R)
:- eval(E1,Env,R1), eval(E2,Env,R2), apply(R1,R2,R).

eval(lambda(X,Exp),Env,R) :- R=closure(X,Exp,Env).
eval(vbl(X),Env,R) :- lookup(X,Env,R).
eval(Exp,Env,R) :- otherwise | R=Exp.

apply(closure(X,Exp1,Env),Exp2,R)
:- eval(Exp1,[X/Exp2|Env],R).

apply(op(P),Exp,R) :- R=op1(P,Exp).
apply(op1(P,Exp1),Exp2,R) :- dobuiltin(P,Exp1,Exp2,R).
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dobuiltin(plus,Exp1,Exp2,R) :- R:=Exp1+Exp2.

// plus code for other built-in operations
If actors were executed sequentially, this interpreter would give us eager evaluation,
since both function and argument expressions in an application are evaluated before
applying the function. However, as we have unrestricted parallelism, initiation of the
evaluation of the function, evaluation of its argument and the function application
itself is concurrent. The effect is that if the function evaluates to a closure, the
function application may take place even though computation of its argument is still
in progress. With an actor network

:- eval(Exp2,Env,R2), apply(closure(X,Exp,Env1),R2,R).
applying the closure gives:

:- eval(Exp2,Env,R2), eval(Exp,[X/R2|Env2],R).

Although the value of R2 is still being computed we may proceed with the evaluation
of Exp. The channel R2 plays a role similar to MultiLisp’s “future” construct
[Halstead, 1985]: a place-holder which may be manipulated as a first-class object
while its final value is being computed. Application of strict operators however will
be suspended until their arguments are evaluated, for example, an arithmetic
operation will reduce to a call to GDC’s built-in arithmetic and suspend until its
arguments are ground.

If a curried operator implements conditional expressions, we will end up by
computing both branches of the conditional even though only one is needed since
computation of both branches will commence in parallel. To inhibit this, as in Field
and Harrison’s eager interpreter, we can treat conditionals as a special case by
including an additional constructor in the definition of expressions to accommodate
them. So “if E1 then E2 else E3” is parsed to cond(E1,E2,E3) rather than
apply(apply(apply(op(cond),E1),E2),E3). We then need to add additional
behaviors:

eval(cond(E1,E2,E3),Env,R)
:- eval(E1,Env,TruthVal), branch(TruthVal,E2,E3,Env,R).

branch(true,E2,E3,Env,R) :- eval(E2,Env,R).
branch(false,E2,E3,Env,R) :- eval(E3,Env,R).

The dependency in branch means that evaluation of the branches of the conditional
will not take place until the condition has been fully evaluated to a Boolean constant.

Full lazy evaluation, as used in modern functional languages, may be obtained by
passing the argument in an application in the form of a suspension containing the
unevaluated expression and its environment to ensure that if it is eventually evaluated
its channels are correctly bound. This gives us the following rule to replace the rule
for evaluating applications:

eval(apply(E1,E2),Env,R)
:- eval(E1,EnvR1), apply(E1,susp(E2,Env),R).

We also need a rule to evaluate suspensions when necessary:
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eval(susp(E,Env1),Env2,R) :- eval(E,Env1,R).
Since the environment may contain suspensions, when we look up an identifier we
may need to evaluate it further, so we alter the rule for variable lookup to:

:- eval(vbl(X),Env,R) :- lookup(X,Env,V), eval(V,Env,R).
Since some primitives such as the arithmetic functions require their arguments to be
fully evaluated before the operation can be completed (that is, the primitives are
strict), we must add this to the code for executing the primitive, for example:

dobuiltin(plus,Exp1,Exp2,R)
:- eval(Exp1,[],R1), eval(Exp2,[],R2), R:=R1+R2.

Parallelism is limited in the lazy interpreter but not completely excised. We no longer
evaluate the function application and the argument simultaneously since evaluation of
the argument is suspended. However evaluation of the arguments to strict primitives,
such as plus above, does take place in parallel. The effect is to give conservative
parallelism: we only do those computations in parallel whose results we know are
definitely needed. A more sophisticated combination of lazy functional programming
could be obtained by using operators such as those proposed by Trinder et al [1998].

The interpreters given here for lambda calculus are not the most efficient that could
be achieved and are given mainly for illustration of the technique of using interpreters
to embed one language in another. One major issue we have not dealt with in lazy
evaluation is that in practice call-by-need is essential to ensure that suspensions are
evaluated once with the evaluation shared by all references to them, rather than re-
evaluated every time they are referenced. An efficient way of dealing with recursion,
used by Field and Harrison [1988], is to build circular environments rather than rely
on the fact that the fixpoint operator can be represented directly in lambda calculus
[Barendregt, 1984]. (These issues can be dealt with in GDC, but there is not space for
further detail here.) Circular environments can be represented directly if we take up
Colmerauer’s proposal [Colmeraurer, 1982] to recognize the lack of the occur check
as a language feature which can be interpreted as the logic of circular or infinite
structures. A more efficient way however would be to dispense with environments
altogether and use a combinator [Turner, 1979] or super-combinator [Hughes, 1982]
based evaluator.

8.10 Conclusion

The use of meta-interpreters may be seen as both a way of structuring programs and a
way of avoiding cluttering a programming language with a variety of features. It has
been recognized that programs are clearer if the logic of the program is separated
from the control. This was one of the guiding principles in the development of logic
programming languages. For efficiency reasons a detailed user-defined control
mechanism may be necessary, but this should not be mixed in with the specification
of the logic of the program. A meta-interpreter may be regarded as the third element
of a program that combines the logic and the control.  It may be an implicit part of the
language or the programmers may themselves provide it.  It is often the case that
program clarity is aided by writing the program in a simple problem-oriented
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language and implementing that language in a language closer to the underlying
machine. Recursively, the implementation language may itself be similarly
implemented. This is a technique already familiar under the name structured
programming [Dahl et  al., 1972]. But metaprogramming provides a clear division
between the levels of structure and the potential separation of logic and control at
each layer means that the top-level layer is not constrained to inherit directly the
control of the machine level, or to be cluttered with explicit control structures to
subvert it.

On language features, meta-interpretation provides a facility to add features or change
aspects of that language as required through the use of an interpreter specifically
designed to add or change a particular feature. This compares with complex single-
level languages where every feature a programmer may at any time have to use must
be added as part of the language definition. This creates an unwieldy language that is
difficult to learn, use safely and debug. It should be recalled that every new feature
added to a language must not only be considered in its own terms but also in terms of
its impact on other features.

One important use of interpreters (not considered in detail) here is their use to assist
in the problem of mapping the abstract parallelism of a language like GDC onto a real
parallel architecture. Such an interpreter would deal with problems like load-
balancing and deciding when the increased communication costs involved in moving
some computation to another processor are balanced by an increased utilization of
parallelism.

The biggest barrier against the use of meta-interpreters as a program or language-
definition structuring device is the overhead. A program, which must work through
several layers of interpreter before getting to the machine level, will not be as
efficient as one that directly controls the machine level. To some extent this can be
overcome, as we have shown, through the use of interpreters in which much of the
lower level is inherited implicitly by the upper level rather than explicitly
reimplemented. However, even the “vanilla meta-interpreter” of logic programming
which inherits almost everything from the underlying level has been shown in
practice to increase execution time by an order of magnitude. A solution to the
problem is to use partial evaluation to flatten out the layers of interpretation into a
single-level program. This technique will be explored in detail in the next chapter.
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Chapter 7

Distributed Constraint Solving

When spider webs unite they can tie up a lion.

Ethiopian proverb

Combinatorial search algorithms of the type discussed in Chapter 6 are usually
described in terms of a single agent manipulating or traversing a representation of the
search space. As shown, however, when the constraint that the search algorithm is run
sequentially is removed, they may be viewed as a collection of agents, organized in a
tree-shaped network, which co-operate in finding an optimal solution, passing
suggested solutions upwards and bounds to solutions downwards. There is no
centralized representation of the search space or overall central planner.

The field of Distributed Artificial Intelligence (DAI) [Bond and Gasser, 1988]
extends the idea of AI problem solving by dividing the work into a number of co-
operating modules. In particular it places an emphasis on problem solving which
from the outset is seen in terms of multiple agents. Gasser and Bond distinguish this
from Parallel Artificial Intelligence (PAI), by which they mean using parallel
architectures and languages simply to improve performance in existent AI systems.
With DAI the aim is as much to advance understanding of the nature of reasoning and
intelligent behavior among multiple agents as to improve performance.

The origin of DAI lies with early, largely speculative, work in computer science that
looked for alternative models of computation to the single-thread von Neumann
model. The work centered on Hewitt at MIT, which saw computation in terms of
message passing [Hewitt, 1977], is an important early component. Hewitt himself
acknowledged the influence of work by Newell [1962]. A particularly important
motivating early work in DAI was the Hearsay-II system [Erman et al., 1980] for
understanding spoken speech. This evolved from the production-system approach by
considering multiple threads of control operating on a single database of information.
A striking metaphor was used, that each thread of control could be considered as an
expert in some aspect of speech understanding. The database could be considered as a
blackboard (Newell [1962] also used the blackboard metaphor) which these experts
used to communicate their partial solutions to the problem between each other. For
example, one expert might have knowledge of phonetics and would write hypotheses
to the blackboard based on grouping sounds into syllables. Another expert might have
knowledge of grammar and would work at putting together words into sentences.
This could also be viewed as coroutining. The method of co-operatively developing
hypotheses was claimed to overcome some of the problems of combinatorial
explosion associated with a single-thread control search with backtracking.

Hearsay’s metaphor of a community of experts clustered around a blackboard has led
to a range of speculative work in which human social systems are taken as a model
for the development of computational systems based around co-operating distributed
processes. Kornfeld and Hewitt [1980] compared problem solving in a parallel
language they developed called Ether [Kornfeld, 1979] with the way communities of
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scientists develop answers to scientific questions. Hewitt [1986] compared a human
office structure with a computational open system. Miller and Drexler [1988]
considered that the arguments of economists who preferred a free-market economy to
a centrally planned system might also apply to computational systems. The way in
which societies of animals exhibit complex behavior emerging from individual
animals obeying fairly simple rules has also been inspirational in the development of
DAI systems [Drogoul and Ferber, 1992].

At its limit, the development of DAI leads to an “open system” characterized as a
large collection of computational services which use each other without central
coordination, trust or complete knowledge of each other. They need to act
concurrently and asynchronously. Kahn and Miller [1988] note that few
programming languages are adequate as foundations on which to program large-scale
open systems, but suggest that actor languages and concurrent logic languages are
exceptions.

The Hearsay-II system fell some way short of the open-system model, as its
communication between computational components, or knowledge sources, was
through the centralized blackboard rather than directly between individual knowledge
sources. In fact although the knowledge sources were conceptually independent they
did not compute concurrently. Rather, there was a single coordinating mechanism
which dictated a priority order [Hayes-Roth and Lesser, 1977]. Given the lack of real
parallelism and its associated indeterminism, this mechanism meant that in reality
Hearsay was centrally controlled. Attempts to introduce real parallelism [Fernel and
Lesser, 1977] were hampered by the need for strong coordination to manage multiple
accesses to the single blackboard (approximately half the processing time was taken
up in coordinating the blackboard) and resulted in limited speedup. This illustrates
the point made above that a conceptual distribution into independent entities as a
design issue to structure an AI system is not necessarily related to a physical
distribution to speed performance. The introduction of multiple blackboards was
suggested by Lesser and Erman [1980]. But Hewitt and Lieberman [1984] argued
against the use of blackboards on the grounds that a single one is a bottleneck but
multiple blackboards are an unnecessary complication that can be dispensed with
altogether in favor of a completely distributed message-passing system. Taking this
further, any central coordinating mechanism can be seen as a bottleneck acting
against the efficiency of a large-scale distributed system.

Blackboard systems may therefore be seen as an intermediate step on the way to full
distributed processing. Another intermediate step was various simple models for
distributing parallel computations over networks of processors. The virtual tree
machine concept of Huntbach and Burton [1984; 1988] for instance, used a simple
mechanism in which individual processors swapped information on their workload
with their neighbors. Based on this information a decision was made on whether to
offload work from one processor to another. There was no overall central
coordinating mechanism and each processor made decisions based only on
knowledge received from its neighbor. With no global view available, very simple
protocols for the exchange of work proved sufficient to maintain a fair share of work
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between processors leading to significant speedups in search problems similar to
those discussed in Chapter 6.

The virtual tree machine, however, assumed homogeneity both in processes and
processors. Each processor in the network could be considered identical to every
other; each process would run the same program, with a copy of that program
available on every processor. Clearly, the component processes of Hearsay-II were
heterogeneous. Allocation of processes to processors would be a considerably more
complex problem if different processors had different programs on them so that each
would have its own problem solving abilities. In these circumstances communication
between the processes to decide where and when a computation is to be executed is
considerably more complex. Davis and Smith [1983] use the metaphor of negotiation
to describe the interchange of information and agreement on distribution of work.
They devised a formal notation, the contract net protocol [Smith, 1980], by which
when a new task is created its existence may be made known to the various
processing elements and those able to execute it could then decide whether to do so.
If several decided to do so, a decision on which to use is made using a bidding
system. The analogy was drawn between this and business management in which
contracts may be put out to tender and the best bid accepted. Subsequent work made
further use of this analogy [Malone et al., 1988]. Growth in these ideas during the
1980s may be linked with the interest expressed in free market economics and the use
of market mechanisms generally during this time. (In Britain, for example, a range of
Acts of Parliament passed in that time either put previously centrally controlled
government services out to tender or introduced internal markets [Chartered Institute
for Public Finance and Accountancy, 1995]). Kraus [1993], among others, has taken
the metaphor so far as to introduce a pseudo-money scheme to reward agents that
have been contracted to do others’ work or to barter for future contracts. The
distinction between processors and processes was also broken down since a
conceptual processor may itself be an abstract software entity provided by an
interpreter (Chapter 8), leading to the idea of a network of software agents
negotiating and competing with each other.

The extent to which agents co-operate is an issue in this style of distributed
processing. Early work in DAI assumed that agents would have common or non-
conflicting actors. Rosenschein and Genesereth [1985] called this the benevolent
agent assumption and suggested that it was unrealistic in a large-scale system with a
highly complex degree of interaction. They suggested that in such a system it might
be better to have a framework that recognizes and resolves sub-actor conflict. This is
an extension of the software engineering principle of trying to minimize the
dependency between modules. Breaking with the assumption that all components will
co-operate perfectly increases the robustness of a system, as it is no longer necessary
to have to take into account explicitly every possible interaction. It also means the
system can be changed by adding or deleting agents without having to reprogram
them. On the other hand, there is an overhead associated with having to establish
links through negotiation. Jennings [1995] gives some experimental results exploring
different degrees of co-operation in an industrial multi-agent system.
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At the minimum, agents need to have a common language by which they
communicate, whether they communicate directly or through the medium of a
blackboard. Agents with a communication link to other agents (acquaintances in the
Actor terminology) may be said to “know” those other agents, the extent to which the
code for one can rely on assumptions about the behavior for another can be described
as its “knowledge” of it. This knowledge may increase in run time as agents co-
operate. Continuing the metaphor with human society, the set of assumptions about
other agents under which individual agents operate may be referred to as “social
laws” [Shoham and Tennenholtz, 1995] and compared with human conceptions of
knowledge and actions [Gasser, 1991]. It has also been suggested that these social
laws could themselves emerge through negotiation between agents [Shoham and
Tennenholtz, 1992]. In this case, there would need to be a set of social metalaws to
describe how interactions would occur to lay down the social laws. (The issue of laws
and metalaws are discussed in Chapter 8). Partial evaluation, covered in Chapter 9, is
of relevance here too. The overhead of a loose control resolved at run-time in order to
give a flexible system may in some cases be overcome by partially evaluating that
system with respect to some particular circumstances. In which case, the negotiation
would take place during partial evaluation time and the resulting residual program
would have a fixed pattern of interaction as in a more traditional system.

7.1 All-pairs shortest path problem

While there is not space here to give GDC programs for a full multi-agent system,
with heterogeneous agents interacting, some idea of the possibilities can be given by
a family of graph programs in GDC which work on a distributed principle, with no
overall control or global data structure. These programs have in common the
representation of each vertex in a graph by a GDC actor and each arc by a shared
channel. The principle of using recursion to turn ephemeral actors to long-lived actors
and partial binding to turn use-once channels to long-lived channels is used.

The first problem considered is the all-pairs shortest-path problem on a directed
graph. Initially, each vertex is represented by an actor that has as data: a unique
identifier, a list of channel/cost pairs representing outward directed arcs and a list of
channel/cost pairs representing incoming arcs. An undirected graph would have to be
represented by having two channels for each arc, one for each direction. An example
graph is shown in Figure 7.1.1 where the letters are vertex names and the numbers arc
costs. The network of actors represents this figure:

:- vertex(a, [a(BA,7),a(GA,9)],[a(AC,5),a(AD,3),a(AF,8)]),
vertex(b, [a(DB,4),a(FB,6)], [a(BA,7)]),
vertex(c, [a(AC,5),a(DC,2)], [a(CE,4)]),
vertex(d, [a(AD,3),a(ED,1)],[a(DB,4),a(DC,2),a(DG,2),a(DF,6)]),
vertex(e, [a(CE,4),a(GE,5)], [a(ED,1),a(EF,10)]),
vertex(f, [a(AF,8),a(EF,10),a(DF,6)],[a(FB,6),a(FG,7)]),
vertex(g, [a(FG,7),a(DG,2)], [a(GA,9),a(GE,5)]).

Note that for convenience of reference, the channels have been given names that
correspond to the arcs they represent.
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Fig. 7.1.1 An example graph for the shortest path problem

The distributed solution to the shortest path problem requires channels representing
arcs to be used as streams. Messages are sent in the reverse direction to their direction
in the graph, since messages received from another node contain the path and cost to
that node. The algorithm is initialized by each actor representing the vertex named x
sending a message down its outgoing streams of the form p(x,[x],N) where N is the
associated cost of the arc. Each actor also merges its incoming streams and sets up a
table. When an actor representing vertex y receives a message of the form p(x,P,N) it
checks its table to see if it has a record of a path to x of lower cost than N. If it has, it
does nothing more until it receives its next message. If it does not, it updates its table
and sends on each of its outgoing streams a message of the form p(x,[y|P],N´) where
N´ is obtained from N by adding the cost paired with the arc represented by the
stream. So actors receive messages containing a destination, a route leading to that
destination and the cost of that route. If no other route is known to that destination or
an existing known route is of higher cost, the new route is stored as the lowest cost
route. Messages are sent out to each further node, z, proposing a new route to x
through y as the shortest route from z to x.

The code to initialize vertex/3 is:

vertex(Id,InArcs,OutArcs)
:- mergeall(OutArcs,InStream),

emptytable(Table),
addtotable(p(Id,[],0),Table,Table1),
sendouts(Id,[],0,InArcs,OutStreams),
vertex(Id,InStreams,OutStreams,Table1).

mergeall([],M) :- M=[].
mergeall([a(Stream,Cost)|Arcs],M)

:- mergeall(Arcs,M1), merge(Stream,M1,M).

where mergeall uses standard stream merger to merge all the incoming streams into
one stream. The actor emptytable sets up a new table of paths and lowest costs and
addtotable adds an entry to this table. The code for sendouts is given below.
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The code for an actor representing a vertex is:

vertex(Id,[p(To,Path,Cost)|Ins],Outs,Table)
:- lowerCostPathExists(To,Cost,Table,Flag),

vertex1(Flag,Id,To,[Id|Path],Cost,Ins,Outs,Table).

vertex1(true,Id,To,Path,Cost,Ins,Outs,Table)
:- vertex(Id,Ins,Outs,Table).

vertex1(false,Id,To,Path,Cost,Ins,Outs,Table)
:- addToTable(p(To,Path,Cost),Table,Table1),

sendouts(To,Path,Cost,Outs,Outs1),
vertex(Id,Ins,Outs1,Table1).

sendouts(From,Path,Cost,[],Outs)
:- Outs=[].

sendouts(From,Path,Cost,[a(Out,Cost1)|Outs],Outs1)
:- Cost2:=Cost+Cost1,

Out=[p(From,Path,Cost2)|Out1],
sendouts(From,Path,Cost,Outs,Outs2),
Outs1=[a(Out1,Cost1)|Outs2].

where lowerCostPathExists(From,Cost,Table,Flag) binds Flag to true if a path
to From of cost lower than Cost exists in table Table and to false otherwise.

At any time a vertex will hold an approximation to the lowest cost paths to other
vertices. This approximation will improve as more messages are sent. When the
whole system reaches a quiescent state when no more messages are being sent, the
all-pairs shortest path problem is solved. In practice, there would also be a way of
querying vertices to find the solutions held in them.

Consider the graph in Figure 7.1.1 and assume that the tables of paths are just lists,
following initialization, the actor network becomes:

:- merge([p(c,[c],5)|AC],[p(d,[],3)|AD],M0),
merge(M0,[p(f,[f],8)|AF],A),
vertex(a,A,[a(BA,7),a(GA,9)],[p(a,[],0)]),
vertex(b,[p(a,[a],7)|BA],[a(DB,4),a(FB,6)],[p(b,[],0)]),
vertex(c,[p(e,[e],4)|CE],[a(AC,5),a(DC,2)],[p(c,[],0)]),
merge([p(b,[b],4)|DB],[p(d,[],2)|DC],M1),
merge([p(g,[g],2)|DG],M1,M2),
merge([p(f,[f],6)|DF],M2,D),
vertex(d,D,[a(AD,3),a(ED,1)],[p(d,[],0)]),
merge([p(d,[d],1)|ED],[p(f,[],10)|EF],E),
vertex(e,E,[a(CE,4),a(GE,5)],[p(e,[],0)]),
merge([p(b,[b],6)|FB],[p(g,[],7)|FG],F),
vertex(f,F,[a(AF,8),a(EF,10),a(DF,6)],[p(f,[],0)]),
merge([p(a,[a],9)|GA],[p(e,[],5)|GE],G),
vertex(g,G,[a(FG,7),a(DG,2)],[p(g,[],0)]).

The next step will depend on which actors are chosen for reduction (no commitment
was made to these existing on separate processors so they will not necessarily reduce
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in parallel) and how the indeterminism of merge is resolved. Note that the actors for
vertices b and c have no inward merger of streams as b and c each have only one
outgoing arc (and hence only one incoming stream of messages). Suppose that these
are chosen for reducing. Then b, having received a message from a will record that it
now knows a path to a and will send messages to d and f proposing that they use this
path to access a. Vertex c, having received a message from e, will similarly record
that it knows a path to e and will send a message to a and d, resulting in:

:- merge([p(c,[c],5),p(e,[c,e],9)|AC],[p(d,[],3)|AD],M0),
merge(M0,[p(f,[f],8)|AF],A),
vertex(a,A,[a(BA,7),a(GA,9)],[p(a,[],0)]),
vertex(b,BA,[a(DB,4),a(FB,6)],[p(a,[a],7),p(b,[],0)]),
vertex(c,CE,[a(AC,5),a(DC,2)],[p(c,[],0),p(e,[e],4)]),
merge([p(b,[b],4),p(a,[b,a],11)|DB],[p(d,[],2),p(e,[c,e],6)|DC]M1),
merge([p(g,[g],2)|DG],M1,M2),
merge([p(f,[f],6)|DF],M2,D),
vertex(d,D,[a(AD,3),a(ED,1)],[p(d,[],0)]),
merge([p(d,[d],1)|ED],[p(f,[],10)|EF],E),
vertex(e,E,[a(CE,4),a(GE,5)],[p(e,[],0)]),
merge([p(b,[b],6),p(a,[b,a],13)|FB],[p(g,[],7)|FG],F),
vertex(f,F,[a(AF,8),a(EF,10),a(DF,6)],[p(f,[],0)]),
merge([p(a,[a],9)|GA],[p(e,[],5)|GE],G),
vertex(g,G,[a(FG,7),a(DG,2)],[p(g,[],0)]).

Suppose that all mergers are resolved by passing on the head of the first stream, the
actor network will then become:

:- merge([p(e,[c,e],9)|AC],[p(d,[],3)|AD],M0),
merge([p(c,[c],5)|M0],[p(f,[f],8)|AF],A),
vertex(a,A,[a(BA,7),a(GA,9)],[p(a,[],0)]),
vertex(b,BA,[a(DB,4),a(FB,6)],[p(a,[a],7),p(b,[],0)]),
vertex(c,CE,[a(AC,5),a(DC,2)],[p(c,[],0),p(e,[e],4)]),
merge([p(a,[b,a],11)|DB],[p(d,[],2),p(e,[c,e],6)|DC],M1),
merge(DG,[p(b,[b],4)|M1],M2),
merge(DF,[p(g,[g],2)|M2],D),
vertex(d,[p(f,[f],6)|D],[a(AD,3),a(ED,1)],[p(d,[],0)]),
merge(ED,[p(f,[],10)|EF],E),
vertex(e,[p(d,[d],1)|E],[a(CE,4),a(GE,5)],[p(e,[],0)]),
merge([p(a,[b,a],13)|FB],[p(g,[],7)|FG],F),
vertex(f,[p(b,[b],6)|F],[a(AF,8),a(EF,10),a(DF,6)],[p(f,[],0)]),
merge(GA,[p(e,[],5)|GE],G),
vertex(g,[p(a,[a],9)|G],[a(FG,7),a(DG,2)],[p(g,[],0)]).

resulting in the actors for vertices d, e, f and g having messages to deal with. From
these messages they will record that they now know paths to f, d, b and a
respectively and send further messages and the system will continue in this way.

Although the code is simple, it shows some elements of the DAI paradigm. There is
no overall coordinator or global record of information as there is in more standard
forms of solving shortest path problems (for example Dijkstra’s method [1959]).
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Actors negotiate on finding an overall solution by sending messages proposing routes
to each other. The language used for communication is very simple, just the
agreement that messages have the three arguments, destination, path and cost in that
order. Actors have knowledge of the rest of the graph in the form of the table of
routes, which grows as computation proceeds. It would be possible to extend this
framework leading to a more complete DAI system, allowing a variety of different
messages to be exchanged, with individual actors being heterogeneous, each holding
different sorts of information and having different sorts of problem-solving abilities.

7.2 The Graph Coloring Problem

The graph-coloring problem is another example of a graph-oriented problem, which
is often used as an example of constraint solving. Mackworth [1977] notes that many
Artificial Intelligence tasks can be formulated as constraint solving problems and
solved by backtracking. Agreeing with Sussmann and McDermott’s criticisms of the
inclusion of backtracking as a feature in programming languages [1972], he notes that
crude backtracking solutions to constraint problems are often inefficient at solving
them. Forms of constraint propagation, such as that proposed by Waltz [1975] for the
interpretation of line drawings, can drastically cut the search space. Yokoo [1998]
discusses the connection between distributed constraint solving and multi-agent
systems.

The k-graph-coloring problem is to find a labeling of the vertices of a graph with
labels chosen from a set of k colors, such that no two vertices labeled with the same
color are connected by a single edge. The chromatic number of a graph is the
minimum value of k such that a k-coloration of the graph can be found. The famous
4-color theorem [Appel and Haken, 1989] is related to this problem. Many practical
resource allocation problems are variations of the graph-coloring problem [Chaitin,
1982], [Wood, 1969]. For most graphs, it is in fact easy either to find a k-coloration
or to show that no such k-coloration exists [Turner, 1988] although the problem can
shown in general to be NP-complete [Gibbons, 1985]. Cheeseman et al. [1991] note
that the reason for this seeming contradiction is that graph coloring is an example of a
problem where there is only a small distance between examples which are easy to
solve and examples which are easy to show insoluble. The really hard problems are
those that fall in this band, in the case of graph coloring within a small range of
density.

Since solutions are easy to find, brute-force search methods, such as those
programmed in Chapter 6, oriented towards problems where it is difficult to find a
solution are often not the most appropriate way to solve them. (In other problems,
such as chess playing, brute-force search methods continue to outperform others [Hsu
et al., 1990]). In some cases, while the problem of finding the optimal solution is NP-
complete, acceptable sub-optimal solutions can be found in polynomial time. Korf
[1990], for example, finds solutions to sliding-tile puzzles like the 8-puzzle of
Chapter 6, which are too large to be found by the branch-and-bound search methods.
Improved solutions can be found by applying modifications to the original sub-
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optimal solution [Minton et al., 1990]. The simulated annealing method [Kirkpatrick
et al., 1983] is a variant of this.

A concurrent algorithm for finding a k-coloration of a graph, which is particularly
suitable for us, was published by Bhandari, Krishna and Siewiork [1988] (henceforth
called the BKS algorithm). It is approximate, as it cannot be guaranteed to find a k-
coloration if one exists. But in most cases it converges quickly on a solution. It is
described in terms of communicating actors representing one vertex of the graph and
communicating with other actors representing nearest neighbors. Hence the problem
falls into the same family as our all-pairs shortest path algorithm. As there is no
concept of direction in edge coloring and the algorithm requires two-way
communication between vertices connected by an edge, each edge must be
represented by two channels, one for sending messages one way, the other for
sending them the other.

The algorithm assumes that the actors representing vertices are each uniquely
numbered. Each holds a list of the colors it may choose from, initially of length k, but
it may be reduced as coloration of neighboring vertices constrains the possibilities
that may be chosen. The algorithm is synchronous. On each cycle each actor selects a
color from its list of possibilities and informs the actors representing neighboring
nodes of the color chosen. Then any actor labeled i, which has chosen a color not
chosen by any of its neighbors labeled j, where j>i, makes the choice permanent,
informing its neighbors that it has done so. Following this, all processors delete from
their list of possible colors, any of which has been chosen and made permanent by
any of their neighbors. The next cycle proceeds with only those actors, which have
not made permanent choices. If any actor has the number of colors it can choose from
reduced to 0 then the algorithms has failed to find a k-coloration. It must eventually
terminate either with a failure or with a k-coloration. This is because on each cycle
the actor who is active with the highest index number will always be able to make its
choice permanent and so the number of active actors is reduced by at least one on
every cycle.

Some elements of negotiation may be observed in this algorithm. Actors may be said
to negotiate on colors by making tentative choices and discussing them with their
neighbors. There is a “social law” expressing a strict order of precedence on the
actors establishing when one must defer to another should both choose the same
color.

In GDC the assumption that each actor is on its own processor need not be
maintained. A node represents an actor and the mapping of actors to vertices is
orthogonal to the abstract description of the algorithm in terms of actors. Although
there is no direct synchronization in GDC, the synchronization of the algorithm will
arise through the exchange of messages in the system. As messages pass both ways
between actors representing vertices connected by an arc, a pair of channels must
represent each arc. These will be represented by Cij/Cji being the pair of channels
linking the actors representing vertices i and j. The convention will be that the first
channel in the pair is used for input, the second for output, the / is just an infix tupling
operator. Each actor will store its links to other actors in two lists, one representing
arcs linking to lower numbered vertices, the other representing arcs linking to higher
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numbered vertices. For example the initial setup for the graph in Figure 7.2.1 (similar
to the one used for shortest path problem, but the numbers are vertex labels and the
graph is undirected) is:

:- vertex(1,C,[C12/C21,C13/C31,C14/C41,C16/C61,C17/C71],[],S1),
vertex(2,C,[C24/C42,C26/C62],[C21/C12],S2),
vertex(3,C,[C34/C43,C35/C53],[C31/C13],S3),
vertex(4,C,[C45/C54,C46/64,C47/C74],[C41/C14,C42/C24,C43/C34],[],S4),
vertex(5,C,[C56/C65,C57/C75],[C53/C35,C54/C45],[],S5),
vertex(6,C,[C67/C76],[C61/C16,C62/C26,C64/C46,C65/C56],[],S6),
vertex(7,C,[],[C71/C17,C74/C47,C76/C67],S7).

•

• •

•

• •

1

2

• 3

4

5

6
7

Fig. 7.2.1 An example graph for the graph coloring problem

Here C is bound to the list of possible colors, while the channel Si is used to return
the color eventually chosen for vertex i.
A direct implementation of the BKS algorithm works by having each actor send a
message of the form mess(Color,Accepted) on all of its output channels. The
channel Color will be bound to the color it has selected from its list of possibilities.
The channel Accepted will be initially unbound, but will later be bound to either
true or false depending on whether the color is accepted permanently (which is not
known until it has received and analyzed all incoming messages). A test is made on
all incoming messages from actors with higher numbered labels and Accepted is
bound to true if none of them has the same color as that selected by the actor, false
otherwise. If Accepted is bound to true, the actor halts and records the color chosen.
Otherwise it goes through its list of incoming messages again, removing from its list
of possible colors any color that has been permanently accepted by any neighbor. The
code for this is:
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vertex(V,Cols,HiChans,LoChans,Sol)
:- select(Cols,Col),

sendCol(Col,Accepted,HiChans),
sendCol(Col,Accepted,LoChans),
accepted(Col,HiChans,Accepted),
retry(Accepted,V,Col,Cols,HiChans,LoChans,Sol).

sendCol(Col,Accepted,[]).
sendCol(Col,Accepted,[I/O|Chans])

:- O=[mess(Col,Accepted)|Chan],
sendCol(Col,Accepted,Chans).

accepted(Col,[],Accepted)
:- Accepted=true.

accepted(MyCol,[[mess(Col,A)|Chan]/O|Chans],Accepted)
:- Col=MyCol
| Accepted=false.

accepted(MyCol,[[mess(Col,A)|Chan]/O|Chans],Accepted)
:- Col=/=MyCol
| accepted(MyCol,Chans,Accepted).

retry(false,V,Col,Cols,HiChans,LoChans,Solution)
:- restrictCols(Cols,HiChans,NewCols1,HiChans1),

restrictCols(NewCols1,LoChans,NewCols,LoChans1),
vertex(V,NewCols,HiChans1,LoChans1,Solution).

retry(true,V,Col,Cols,HiChans,LoChans,Solution)
:- Solution=node(V,Col).

restrictCols(Cols,[[mess(Col,true)|I]/[Mess|O]|Chans],
NewCols,NewChans)

:- removeCol(Col,Cols,NewCols1),
restrictCols(NewCols1,Chans,NewCols,NewChans).

restrictCols(Cols,[[mess(Col,false)|I]/[Mess|O]|Chans],
NewCols,NewChans)

:- restrictCols(Cols,Chans,NewCols,NewChans1),
NewChans=[I/O|NewChans1].

restrictCols(Cols,[],NewCols,NewChans)
:- NewCols=Cols,

NewChans=[].
This will completely implement the BKS algorithm, given the initial vertex setup,
needing only code for select to be added. One possibility is always to take the first
color from the list, which will lead to a vertex choosing color n from a list of k colors
only if it cannot choose any of colors 1 to n–1 due to neighbors having permanently
accepting each of them. Note that although there is no central synchronization
mechanism, the fact that each actor must read every message from its neighbors
before sending out a further message acts to synchronize them.
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Although the code given above directly reflects the original BKS algorithm, an
inefficiency is apparent. The list of channels from higher numbered vertices on any
particular vertex is traversed twice. It is first traversed to find if any of them has
chosen the same color as chosen by the vertex in question. It is again traversed in
restrictCols to see if any of the colors chosen by higher numbered vertices has been
accepted permanently. The list of channels from lower numbered vertices is traversed
only in restrictCols. But restrictCols requires the Accepted argument in the
messages to be bound, which can only take place when the lower indexed actor has
received and read all the messages from its higher indexed neighbors. Thus it is not
necessary for two neighboring actors to send messages to each other simultaneously.
The lower indexed actor can wait until it has received a message from the higher and
reply by back-communication without affecting the amount of potential parallelism.

This leads to an improved algorithm in which arcs are represented by a single
channel. Messages between actors take the form mess(Col,Accepted,Return). Here
Col is the color chosen by the higher indexed actor; Accepted indicates whether it
has been accepted permanently (as before, it may be unbound at the time the original
message is sent) and Return is used for the return communication from the lower
indexed actor. Return is set to none if that actor does not make a permanent choice
of color in that cycle, or to the color chosen if it does. The initial actor setup for the
graph shown previously is:

:- vertex(1,C,[C12,C13,C14,C16,C17],[],S1),
vertex(2,C,[C24,C26],[C12],S2),
vertex(3,C,[C34,C35],[C13],S3),
vertex(4,C,[C45,C46,C47],[C14,C24,C34],[],S4),
vertex(5,C,[C56,C57],[CC35,CC45],[],S5),
vertex(6,C,[C67],[C16,C26,C46,C56],[],S6),
vertex(7,C,[],[C17,C47,C67],S7).

where C is the list of possible colors. The revised program (less restrictCol, which
remains unchanged) is:

vertex(V,Cols,HiChans,LoChans,Solution)
:- select(Cols,Col),

sendCol(Col,Accepted,LoChans),
accepted(Col,HiChans,Accepted),
retry(Accepted,V,Col,Cols,HiChans,LoChans,Solution).

sendCol(Col,Accepted,[]).
sendCol(Col,Accepted,[X|Chans])

:- X=[mess(Col,Accepted,YourCol)|Chan],
sendCol(Col,Accepted,Chans).

accepted(Col,[],Accepted) :- Accepted=true.
accepted(MyCol,[[mess(Col,A,Ret)|Chan]|Chans],Accepted)

:- Col=MyCol |
Accepted=false.
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accepted(MyCol,[[mess(Col,A,Ret)|Chan]|Chans],Accepted)
:- Col=/=MyCol |

accepted(MyCol,Chans,Accepted).

retry(false,V,Col,Cols,HiChans,LoChans,Solution)
:- hiResCols(Cols,HiChans,NewCols1,HiChans1),

loResCols(NewCols1,LoChans,NewCols,LoChans1),
vertex(V,NewCols,HiChans1,LoChans1,Solution).

retry(true,V,Col,Cols,HiChans,LoChans,Solution)
:- cutoff(Col,HiChans),

Solution=Col(V,Col).

cutoff(Col,[]).
cutoff(Col,[[mess(Col,Accepted,Ret)|Chan]|Chans])

:- Ret=Col,
cutoff(Col,Chans).

hiResCols(Cols,[[mess(Col,true,Ret)|I]|Chans],NewCols,NewChans)
:- removeCol(Col,Cols,NewCols1),

hiResCols(NewCols1,Chans,NewCols,NewChans).
hiResCols(Cols,[[mess(Col,false,Ret)|I]|Chans],NewCols,NewChans)

:- Ret=none,
hiResCols(Cols,Chans,NewCols,NewChans1),
NewChans=[I|NewChans1].

hiResCols(Cols,[],NewCols,NewChans)
:- NewCols=Cols,

NewChans=[].

loResCols(Cols,[[mess(MyCol,false,Col)|I]|Chs],NewCols,NewChs)
:- Col=/=none |

removeCol(Col,Cols,NewCols1),
loResCols(NewCols1,Chs,NewCols,NewCs).

loResCols(Cols,[[mess(MyCol,false,none)|I]|Chs],NewCols,NewChs)
:- loResCols(Cols,Chs,NewCols,NewChs1),

NewChs=[I|NewChs1].
loResCols(Cols,[],NewCols,NewChs)

:- NewCols=Cols,
NewChs=[].

Thus, single channels now represents arcs, and carry a stream of messages running
from a higher to a lower numbered vertex. Each actor representing a vertex chooses a
color from its list of available colors and sends a message to the actors representing
its lower-numbered connections only. The message takes the form
mess(Col,Accepted,Return). Here, Col is the color chosen, Accept is an unbound
channel shared between all the messages to be used to send a further message, but
Return is a separate unbound channel for each message sent to be used to receive a
reply. The actor then reads the Col argument of the messages it has received from the
actors representing its higher-numbered connections. If none of the colors chosen by
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its higher-numbered connections are the same as the color it has chosen, it sends a
message indicating that it has permanently accepted its color to its lower-numbered
connections by binding the previously unbound Accepted to true. Only then, it
informs its higher-numbered connections by binding the Return argument in each of
the messages it received from them to the color. Otherwise, it indicates that it has not
permanently accepted its color by binding the Accepted channel in the messages it
previously sent out to false and binding the Return channel in each of the messages
it has received to none. If any of the messages it has received has its Accepted
channel bound to true, it removes the color in the Col channel of the message from
its own list of colors and removes the channel the message was received on from its
list of input channels. It also reviews the Return channels in each of the messages it
has sent out. If any of them has been bound to a color rather than none it removes
that color from its list and removes the channel the message was sent out on from its
list of output channels.

As an example of the algorithm in execution, let us consider using it to find a 4-
coloration of the graph given in Figure 7.2.1 with initially each vertex having the list
red, green, yellow and blue (initialized in the trace below) as possible colors. The
selection rule used is that every vertex chooses the first color from its list. Cycles of
the algorithm are broken into three stages:

1. Choose colors and inform lower numbered neighbors of choice.
2. Decide whether to make choice permanent depending on messages received from

higher numbered neighbors. Inform lower numbered neighbors of permanency of
previously communicated choice and higher numbered neighbors of choice or
none by back-communication.

3. Receive information on permanent choices and restrict list of colors and channels
accordingly.

The trace is:

Cycle 1a
   Vertex 1: [r,g,y,b] Chooses r
   Vertex 2: [r,g,y,b] Chooses r, informs 1 of choice
   Vertex 3: [r,g,y,b] Chooses r, informs 1 of choice
   Vertex 4: [r,g,y,b] Chooses r, informs 1,2,3 of choice
   Vertex 5: [r,g,y,b] Chooses r, informs 3,4 of choice
   Vertex 6: [r,g,y,b] Chooses r, informs 1,2,4,5 of choice
   Vertex 7: [r,g,y,b] Chooses r, informs 1,4,5,6 of choice

Cycle 1b
   Vertex 1: Receives messages:

2 chose r, 3 chose r, 4 chose r, 6 chose r, 7 chose r
 Does not make its choice of r permanent
 Replies to 2,3,4,6 and 7: no permanent choice made

   Vertex 2: Receives messages: 4 chose r, 6 chose r
 Does not make its choice of r permanent
 Replies to 4 and 6: no permanent choice made
 Further message to 1: choice not permanently accepted
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   Vertex 3: Receives messages: 4 chose r, 5 chose r
 Does not make its choice of r permanent
 Replies to 4 and 5: no permanent choice made
 Further message to 1: choice not permanently accepted

   Vertex 4: Receives messages: 5 chose r, 6 chose r, 7 chose r
 Does not make its choice of r permanent
 Replies to 5, 6 and 7: no permanent choice made
 Further message to 1,2,3: choice not permanently accepted

   Vertex 5: Receives messages: 6 chose r, 7 chose r
 Does not make its choice of r permanent
 Replies to 6 and 7: no permanent choice made
 Further message to 3,4: choice not permanently accepted

   Vertex 6: Receives message: 7 chose r
 Does not make its choice of r permanent
 Replies to 7: no permanent choice made
 Further message to 1,2,4,5 choice not permanently accepted

   Vertex 7: Receives no messages
 Makes its choice of r permanent
 Further message to 1,4,5,6: choice made permanent

Cycle 1c
   Vertex 1: Informed by 2,3,4,6 previous choice not accepted

 Receives message from 7 of permanent choice of r
 Closes channel with 7
 Restricts color list to [g,y,b]

   Vertex 2: Informed by 1 no permanent choice made
 Informed by 4,6 previous choice not accepted

   Vertex 3: Informed by 1 no permanent choice made
 Informed by 4,5 previous choice not accepted

   Vertex 4: Informed by 1,2,3 no permanent choice made
 Informed by 5,6 previous choice not accepted
 Receives message from 7 of permanent choice of r
 Closes channel with 7
 Restricts color list to [g,y,b]

   Vertex 5: Informed by 3,4 no permanent choice made
 Informed by 6 previous choice not accepted
 Receives message from 7 of permanent choice of r
 Closes channel with 7
 Restricts color list to [g,y,b]

   Vertex 6: Informed by 1,2,4,5 no permanent choice made
 Receives message from 7 of permanent choice of r
 Closes channel with 7
 Restricts color list to [g,y,b]

   Vertex 7: COLORED r
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Cycle 2a
   Vertex 1: [g,y,b] Chooses g
   Vertex 2: [r,g,y,b] Chooses r, informs 1 of choice
   Vertex 3: [r,g,y,b] Chooses r, informs 1 of choice
   Vertex 4: [g,y,b] Chooses g, informs 1,2,3 of choice
   Vertex 5: [g,y,b] Chooses g, informs 3,4 of choice
   Vertex 6: [g,y,b] Chooses g, informs 1,2,4,5 of choice

Cycle 2b
   Vertex 1: Receives messages: 2 chose r, 3 chose r, 4

chose g, 6 chose g
 Does not make its choice of g permanent
 Replies to 2,3,4 and 6: no permanent choice made

   Vertex 2: Receives messages: 4 chose g, 6 chose g
 Makes its choice of r permanent
 Replies to 4 and 6: permanent choice made of r
 Further message to 1: choice made permanent

   Vertex 3: Receives messages: 4 chose g, 5 chose g
 Makes its choice of r permanent
 Replies to 4 and 5: permanent choice made of r
 Further message to 1: choice made permanent

   Vertex 4: Receives messages: 5 chose g, 6 chose g
 Does not make its choice of g permanent
 Replies to 5 and 6: no permanent choice made
 Further message to 1,2,3: choice not permanently accepted

   Vertex 5: Receives message: 6 chose g
 Does not make its choice of g permanent
 Replies to 6: no permanent choice made
 Further message to 3,4: choice not permanently accepted

   Vertex 6: Receives no messages
 Makes its choice of g permanent
 Further message to 1,2,4,5: choice made permanent

Cycle 2c
    Vertex 1: Receives message from 2 of permanent choice of r

   Receives message from 3 of permanent choice of r
   Informed by 4 previous choice not accepted
   Receives message from 6 of permanent choice of g
   Closes channels with 2,3,6
   Restricts color list to [y,b]

    Vertex 2: COLORED r
    Vertex 3: COLORED r
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    Vertex 4: Informed by 1 no permanent choice made
   Receives message from 2 of permanent choice of r
   Receives message from 3 of permanent choice of r
   Informed by 5 previous choice not accepted
   Receives message from 6 of permanent choice of g
   Closes channels with 2,3,6
   Restricts color list to [y,b]

    Vertex 5: Receives message from 3 of permanent choice of r
   Informed by 4 no permanent choice made
   Receives message from 6 of permanent choice of g
   Closes channels with 3,6
   Restricts color list to [y,b]

    Vertex 6: COLORED g

Cycle 3a
    Vertex 1: [y,b] Chooses y
    Vertex 4: [y,b] Chooses y, informs 1 of choice
    Vertex 5: [y,b] Chooses y, informs 4 of choice

Cycle 3b
    Vertex 1: Receives message: 4 chose y

   Does not make its choice of y permanent
    Vertex 4: Receives message: 5 chose y

   Does not make its choice of y permanent
   Replies to 1: no permanent choice made

    Vertex 5: Receives no message
   Makes its choice of y permanent
   Further message to 4: choice made permanent

Cycle 3c
    Vertex 1: Informed by 4 previous choice not accepted
    Vertex 4: Informed by 1 no permanent choice made

   Receives message from 5 of permanent choice of y
   Closes channel with 5
   Restricts color list to [b]

    Vertex 5: COLORED y

Cycle 4a
    Vertex 1: [y,b] Chooses y
    Vertex 4: [b] Chooses b, informs 1 of choice

Cycle 4b
    Vertex 1: Receives message: 4 chose b

   Makes its choice of y permanent
    Vertex 4: Receives no messages

   Makes its choice of b permanent
   Further message to 1: choice made permanent
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Cycle 4c
    Vertex 1: COLORED y
    Vertex 4: COLORED b

Thus the final result, achieved after four cycles is that vertices 2, 3 and 7 are colored
red, vertices 1 and 5 are colored yellow, vertex 6 is colored green and vertex 4 is
colored blue. Note that the select mechanism used meant that even if more than four
colors were available initially, a 4-coloration would have been found since any vertex
would only have considered a fifth color had the first four been excluded from it
during the course of the algorithm execution.

Now consider how this is represented in GDC. The initial setup is as before, with C
bound to [r,g,y,b]. Following the first sending of messages after stage 1a, the
situation is:

:- accepted(r,[C12,C13,C14,C16,C17],A1a),
retry(A1a,1,r,[r,g,y,b],[C12,C13,C14,C16,C17],[],S1),
C12=[mess(r,A2a,R12a)|C12a],
accepted(r,[C24,C26],A2a),
retry(A2a,2,r,[r,g,y,b],[C24,C26],[C12],S2),
C13=[mess(r,A3a,R13a)|C13a],
accepted(r,[C34,C35],A31a),
retry(A3a,3,r,[r,g,y,b],[C34,C35],[C13],S3),
C14=[mess(r,A4a,R14a)|C14a],
C24=[mess(r,A4a,R24a)|C24a],
C34=[mess(r,A4a,R34a)|C34a],
accepted(r,[C45,C46,C47],A4a1),
retry(A4a,4,r,[r,g,y,b],[C45,C46,C47],[C14,C24,C34],[],S4),
C35=[mess(r,A5a,R35a)|C35a],
C45=[mess(r,A5a,R45a)|C45a],
accepted(r,[C56,C57],A5a),
retry(A5a,5,r,[r,g,y,b],[C56,C57],[C35,C45],[],S5),
C16=[mess(r,A6a,R16a)|C16a],
C26=[mess(r,A6a,R26a)|C26a],
C46=[mess(r,A6a,R46a)|C46a],
C56=[mess(r,A6a,R56a)|C56a],
accepted(r,[C67],A6a),
retry(A6a,r,[r,g,y,b],[C67],[C16,C26,C46,C56],[],S6),
C17=[mess(r,A7a,R17a)|C17a],
C47=[mess(r,A7a,R47a)|C47a],
C67=[mess(r,A7a,R67a)|C67a],
accepted(r,[],A7a),
retry(A7a,7,r,[r,g,y,b],[],[C17,C47,C67],S7).

Following this, each accepted actor will bind its final argument to false except
accepted(r,[],A7a) which binds A7a to true. Each retry actor, except the one for
vertex 7 will then reduce to a hiResCols and a loResCols actor, with the
hiResCols actors reducing and sending the return messages which are used in the
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loResCols actors. This corresponds to the end of stage 1b and the beginning of 1c,
leaving the actor situation:

:- R12a=none, R13a=none, R14a=none, R16a=none,
vertex(1,[g,y,b],[C12a,C13a,C14a,C16a],[],S1),
R24a=none, R26a=none,
loResCols([r,g,y,b],[[mess(r,false,R12a)|C12a]],Col2,Lo2),
vertex(2,Col2,[C24a,C26a],Lo2,S2),
R34a=none, R35a=none,
loResCols([r,g,y,b],[[mess(r,false,R13a)|C13a]],Col3,Lo3),
vertex(3,Col3,[C34a,C35a],Lo3,S3),
R45a=none, R46a=none, R47a=none,
loResCols([g,y,b],

[[mess(r,false,R14a)|C14a],
[mess(r,false,R24a)|C24a],
[mess(r,false,R34a)|C34a]],
Col4,Lo4),

vertex(4,Col4,[C45a,C46a],Lo4,S4),
R56a=none, R57a=none,
loResCols([g,y,b],

[[mess(r,false,R35a)|C35a],[mess(r,false,R45a)|C45a]],
Col5,Lo5),

vertex(5,Col5,[C56a],Lo5,S5),
R671=none,
loResCols([g,y,b],

[[mess(r,false,R16a)|C16a],[mess(r,false,R26a)|C26a],
[mess(r,false,R46a)|C46a],[mess(r,false,R56a)|C56a]],
Lo6,S6),

vertex(6,Col6,[],Lo6,S6),
S7=col(7,r).

At this point only vertex 7 has made a permanent choice and all the none reply
messages shown above indicate that there is no case where a low numbered vertex
has been able to make a permanent choice. This leads to the situation following the
second round of color choices (stage 2a):

:- accepted(g,[C12a,C13a,C14a,C16a],A1b),
retry(A1b,1,g,[g,y,b],[C12a,C13a,C14a,C16a],[],S1),
C12a=[mess(r,A2b,R12b)|C12b],
accepted(r,[C24a,C26a],A2b),
retry(A2b,2,r,[r,g,y,b],[C24a,C26a],[C12a],S2),
C13a=[mess(r,A3b,R13b)|C13b],
accepted(r,[C34a,C35a],A3b),
retry(A3b,3,r,[r,g,y,b],[C34a,C35a],[C13a],S3),
C14a=[mess(g,A4b,R14b)|C14b],
C24a=[mess(g,A4b,R24b)|C24b],
C34a=[mess(g,A4b,R34b)|C34b],
accepted(g,[C45a,C46a,C47a],A4b),
retry(A4a,4,g,[g,y,b],[C45a,C46a],[C14a,C24a,C34a],[],S4),
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C35a=[mess(g,A5b,R35b)|C35b],
C45a=[mess(g,A5b,R45b)|C45b],
accepted(g,[C56a],A5b),
retry(A5b,5,g,[g,y,b],[C56a,C57a],[C35a,C45a],[],S5),
C16a=[mess(g,A6b,R16b)|C16b],
C26a=[mess(g,A6b,R26b)|C26b],
C46a=[mess(g,A6b,R46b)|C46b],
C56a=[mess(g,A6b,R56b)|C56b],
accepted(g,[],A6b),
retry(A6b,g,[g,y,b],[],[C16a,C26a,C46a,C56a],[],S6).

This time vertices 2 and 3 are able to make their choice permanent, as well as the
highest numbered vertex, 6. Thus, each of them has their acceptance channel A2b,
A3b and A6b respectively bound to true (these channel names are given purely for
demonstration purposes, here the b indicating that it is a second attempt to try for
acceptance). The actor scenario then is:

:- R12b=none, R13b=none, R14b=none, R16b=none,
vertex(1,[y,b],[C14b],[],S1),
R24b=r, R26b=r,
S2=col(2,r),
R34b=r, R35b=r,
S3=col(3,r),
R45b=none, R46b=none,
loResCols([y,b],[[mess(g,false,R14b)|C14b],

[mess(g,false,R24b)|C24b],
 [mess(g,false,R34b)|C34b]],

Col4,Lo4),
vertex(4,Col4,[C45b,],Lo4,S4),
R56b=none,
loResCols([y,b],

[[mess(g,false,R35b)|C35b],[mess(g,false,R45b)|C45b]],
Col5,Lo5),

vertex(5,Col5,[],Lo5,S5),S6=col(6,g).

So the information that vertices 2 and 3 have each chosen color r is passed through
the reply channels R24b, R26b, R34b, and R35b to their remaining higher
numbered neighbors. The tracing of this problem will be left at this stage.

It might be questioned why in this algorithm a vertex cannot permanently accept a
color if the only thing stopping it is a higher-numbered vertex which has chosen that
color, but has not permanently accepted it itself. The reason is that to introduce a
wait-to-see whether each of the colors chosen by its higher-numbered connections is
accepted, would destroy the parallelism of the algorithm, since its own lower-
numbered connections would then have to wait in sequence and so on. Yokoo and
Hirayama’s [1998] algorithm for multi-agent graph-coloring has some similarities to
the one above. This includes the use of an improved priority on agents and a
multistage process where colors are chosen, communicated and then either accepted
and confirmed or rejected. Yokoo and Hirayama’s algorithm appears to require many
more cycles to come to a solution than the one presented here.
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The second program for graph coloring illustrates how GDC may be used as an
executable specification language to develop parallel algorithms. The initial program
was a GDC representation of an algorithm that had been described in the abstract in
the initial reference. An improved version of the algorithm was obtained by noting
and correcting inefficiencies in the GDC program and then describing the underlying
algorithm of the improved program in abstract terms again. In the next section an
algorithm for the minimal spanning tree graph problem is discussed that was arrived
at by similar means [Huntbach, 1993].

7.3 Minimal Spanning Trees

The minimal spanning tree problem may be stated as follows:

An undirected graph G = <V,E> consists of a vertex set V and an
edge set E. Associated with each edge {u,v} is a cost c(u,v)>0. A
minimal spanning tree of G is a connected subgraph <V,E’> such

that ∑{u,v}∈E’c(u,v) is minimal. Such a subgraph must be a tree,
since if not there exists a circuit and by removing an edge a lower
cost spanning tree can be derived.

The following concept can be used to produce a minimal spanning tree algorithm:

A linked minimal spanning forest of a graph <V,E> is a set of
triplets {<V1,E1,L1>,…,<Vn,En,Ln>} where V1,…,Vn partitions

V; Ei,Li ⊆E; <Vi,Ei> is a minimal spanning tree over

<Vi,{{u,v}∈E|u,v∈Vi}>, Li={{u,v}∈E|u∈Vi,v∈Vj,j ≠i}, 1<I<n.
That is, the vertices of the graph <V,E> are divided up among the
trees of the forest, each tree in the forest is a minimal spanning tree
over its vertices With each tree is a set of linking edges, which are
those edges in E which link vertices in the tree with vertices in
other trees.

Given a linked minimal spanning forest, if {u,v} is the lowest cost member of Li with
u∈Vi, v∈Vj, trees [Vi,Ei,Li] and [Vj,Ej,Lj] can be removed from the forest and replace
them by [Vk,Ek,Lk] where

Vk=Vi∪ Vj, Ek=Ei∪ Ej∪{(u,v)}, Lk=Li∪ Lj–{{x,y}|x∈Vi,y∈Vj}

The result will also be a linked minimal spanning forest. That is two trees in the
forest have been simply linked by their lowest cost linking edge and any other edges
that also join these trees deleted. Starting with the linked minimal spanning forest
{<{v},{},Lv>|v∈V,Lv={{v,y}∈E}}, where each tree consists of just a single vertex,
every time the above replacement is applied it will reduce the number of trees in the
forest by one. Eventually the stage where the forest has the single element <V,E',{}>
will be reached, which since it covers all the vertices is a minimal spanning tree for
<V,E>.
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The above algorithm is presented in a slightly unorthodox manner. By explicitly
partitioning the set of edges into linking edges for each tree an algorithm is produced
which is more general than those usually presented. The idea of linking edges is
implicit, though not stressed in the algorithm of Lavallée and Roucairol [1986],
which is discussed below. It is also found in the work of Yao [1975] and Gabow et al
[1989], but not usually in texts introducing the minimal spanning tree problem.

The algorithm as described leaves open the question of which trees are merged at any
stage. At any time, if F is the forest, there will be at least |F|/2 mergers possible since
each tree will have a minimum cost linking edge to use. But it is possible for a pair of
trees to mutually agree on merger – this will occur when the minimum cost linking
edge of Vi is {x,y} and that of Vj is {y,x}. (Although these refer to the same edge, the
convention that a tree refers to its linking edges by the node that occurs in the tree
first is used). The solution to the problem is indeterminate if edge costs are not
unique. If there are two or more edges of minimum cost linking two trees in the forest
and the cost is minimal for both trees any of the edges may be used leading to a
different solution for each. A protocol needs to be established to prevent not just
simultaneous attempts at merger using the same edge, but the case where one
attempts to merge using one of the edges and the other simultaneously attempts to
merge using another. This is discussed in further detail below. At most there will be
|F|–1 mergers possible – this will occur when there is some tree with which each
minimum cost linking edge of all the other subtrees links. The classical algorithms of
Prim and Kruskal [Barr et al., 1989] can be considered special cases of this algorithm.

Prim's algorithm [1957] (also attributed to Dijkstra [1959]) works by continually
adding edges to one subtree until it encompasses all the vertices in the graph.
Keeping the trees in the above algorithm in a list, always trying to link the first tree
with another and always putting the resulting merged tree at the head of the list gives
Prim's algorithm. Sollin’s algorithm [Berge and Ghouila-Houri, 1965] can be
obtained by putting the resulting merged tree at the end of the list. The equivalent to
Kruskal’s algorithm [1956] can be obtained by linking whichever two trees in the
forest can be linked by the shortest link of any possible merger. As conventionally
described however, Kruskal’s algorithm delays deleting edges, working instead by
considering the edges one by one in order of cost and deleting those which link
vertices already in the same tree due to a previous merger.

Barr, Helgaon and Pennington [1989] present a concurrent version of Prim's
algorithm in which the parallelism comes in the search for the lowest cost link from
the first subtree. Our presentation of the minimal spanning tree problem makes it
clear that there is a large source of parallelism in the minimal spanning tree problem
apart from this. The main source being the fact, shown above, that at any stage at
least |F|/2 mergers are possible. Rather than pick between them they can all be
carried out in parallel. The present description of the problem in terms of a linked
minimal spanning forest removes all global data structures and the consequent need
to co-ordinate access to global structures. It suggests a distributed approach to the
problem in which agents represent the trees in the forest. Mergers take place through
negotiation between these agents. Although further parallelism is available in the
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bookkeeping associated with merging two trees, our concern is with the more
fundamental parallelism of allowing several trees to merge at one time.

An actor that contains lists of the vertices and edges that form the tree may represent
each tree in the linked minimal spanning forest. The links are represented as a list of
channel/cost pairs. Thus if trees Ti and Tj are linked by edge {x,y} on Ti (and hence
{y,x} on Tj) there will be a shared channel between the actors representing the trees Ti

and Tj. The merger of Ti and Tj can be accomplished by the actor Ti sending a
message containing its edges, vertices and links to the actor for Tj on the channel
representing the link {x,y} and terminating. On receiving the message, the actor for Tj

will adjust its records accordingly to become the actor for the new merged tree. This
model therefore assumes that the initiative for a merger is taken by the tree which is
to merge. The initial state of the actor system represents the initial graph, with
vertices represented by actors and edges represented by channels. This is similar to
the initial state in the graph-coloring algorithm above. However whereas in the graph-
coloring algorithm the actor and communications structure remains static, here it
alters as the algorithm progresses.

Consider what happens when the lowest cost link on Ti is {x,y} and the lowest cost
link on Tj is {y,x}. A protocol needs to be established so that both trees do not send
merger messages to each other and terminate. Supposing the cost of each edge in the
graph is distinct, there is the more general problem of a circuit of trees mutually
attempting to merge with each other. Consider the case where one of the lowest cost
links (there may be several with the same cost) on Ti is the link to Ti+1. One of the
lowest cost links on Ti+1 is a link to Ti+2 and so on to Ti+k and the lowest cost links on
Ti+k include a link to Ti. This circuit can only exist if each of its links has an identical
cost. Assuming a method for mutual merging across a link, two linked trees can
mutually agree to merge at any edge in the circuit, but this will still leave a smaller
circuit. Without a circuit-breaking mechanism, the potential problem of each of the
trees in the circuit attempting to merge with the next one remains.

Ignoring for now the circuit problem, the case of Ti merging with Tj at the same time
as Tj merges with Tk can be easily resolved. It may be noted that the merger operation
is associative, so it does not matter if Ti first merges with Tj then the resulting tree
merges with Tk, or Tj merges with Tk and Ti merges with the result. So if Tj merges
with Tk without waiting for the incoming message from Ti, since the merger operation
causes the channels of Tj to be included among the channels of the new merged actor,
the incoming message will simply be passed on to this new merged actor. Note that it
is not possible for a merger to replace the lowest cost link with a lower cost one. A
tree always merges using its lowest cost link (which must be one of the existing links
in the tree to which it is merging since the graph is non-directional). A tree can only
bring in more links of equal or greater cost, so at most merger can only introduce
additional lowest cost links.

The algorithm as described so far originates from attempts to implement the
algorithm of Lavallée and Roucairol [1986]. The principal difference is that Lavallée
and Roucairol keep the initial actor/channel state throughout the computation. In their
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case, when a tree merges its actor remains in existence, explicitly passing further
merger messages onto the actor representing the merged tree. Their description of the
algorithm in a CSP-like notation does not allow for channels to be passed in messages
and, hence, the necessity for these explicit message passing actors. In GDC, channels
are recursive and may easily be passed around in messages. The effect of passing a
channel in actor P to actor Q is that messages intended for P will be received by Q.

Lavallée and Roucairol make the assumption that each vertex is identified by a
unique integer. The lowest valued identifier in a tree is referred to as its root. Thus
the actors representing the roots of the trees at any time can be considered to be the
“real” actors of the algorithm, other actors being simply methods of passing
information between roots. The circuit problem is resolved by allowing a tree Ti to
send its edge and link details and merge with Tj only if the root of Ti is greater than
the root of Tj. It follows that no circuit of mergers can occur.

The difficulty with the algorithm is that an actor Ti cannot simply decide to merge
across its lowest cost link, because it does not know the root of Tj, the actor with
which it is attempting to merge. Instead it must first send a request to merge
containing its own root identifier. On receiving the request, Tj will send back either an
acceptance or a refusal depending on the root values. (In fact, the algorithm as
described in the reference is slightly different: the message-passing actors answer
queries directly and can do so as they hold a record of their root which is updated
when mergers take place). Only when an acceptance has been received will Ti send its
full details for merger to take place. While waiting for acceptance or refusal of its
merger request Ti will accept or refuse any requests it receives and modify its records
if it receives any full mergers (which clearly can only come from trees with higher
roots than its own, so will not affect its own root value).

If Ti’s request for a merger is refused, it may be the case that Tj has requested a
merger which Ti will accept and which will cause its lowest cost link to be deleted
when the merger is completed. Otherwise, Ti has no alternative but to repeat the
request in the hope that in the meantime Tj has merged with another tree Tk whose
root is low enough for the request to be accepted. A modification to the algorithm is
suggested in which if Ti’s merger request is refused, Ti will not make any further
requests until it has itself received a request from its lowest cost link indicating that Tj

has indeed merged with some Tk.

It may be noted that even when the complexities due to the existence of explicit
message-passing nodes have been stripped out, the algorithm still requires the
interchange of at least three messages to accomplish a merger. Nevertheless, Lavallée
and Roucairol claim that their algorithm improves on that of Gallagher, Humblet and
Spira [1983] in terms of the number of message exchanges. The algorithm for
coordinating tree merger, given below, improves on both, requiring just one message
to accomplish each tree merger. The algorithm solves the problem of circuits by
making channels between actors representing edges unidirectional. Thus, Lavallée
and Roucairol’s imposition of an ordering on potential mergers through root identities
may be replaced by an imposition of ordering on individual edges. Unidirectional
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channels simplify the representation in GDC, since a single shared channel can
represent such a channel. The convention that a unique integer identifier represents
each vertex is adopted. A channel representing the link between the vertex identified
x and the vertex identified y, where x>y is set to be unidirectional, outgoing from the
actor containing the vertex x and incoming at the actor containing vertex y. It should
be stressed that the graph itself is still nondirectional – a nondirectional edge is
simply represented by a unidirectional channel. It can be seen that this is a similar
approach to that adopted in the graph-coloring problem.

At any time during the algorithm’s execution any actor whose lowest cost link is
represented by an incoming channel will remain passive waiting for a merger
message to arrive. Any actor whose lowest cost link is represented by an outgoing
channel will send a message containing its vertices, edges and linking channels (both
incoming and outgoing) down this lowest cost channel and terminate. Note that when
an actor receives a message, it is not necessarily on its own lowest cost incoming
link, so we require the ability to receive on any incoming channel.

When a passive actor receives a merger message from one of its incoming channels,
it appends the vertices and edges to its own and adds the new edge from which the
merger message was received. It then deletes from its links any links, incoming or
outgoing, which link to the newly added vertices. It adds to its links any of the new
links, which do not link to any of its existing vertices. These new links retain their
status unchanged as incoming or outgoing. If the result is that the lowest cost link is
still represented by an incoming channel, the actor remains passive. Otherwise it
merges and terminates using its lowest cost link, as above. Execution continues until
there is only one actor left with no links – the edges on this actor then form the
minimal spanning tree. When there is an incoming link and an outgoing link of the
same cost and no links of lower cost, the actor remains passive if the vertex of the
actor to which the incoming link joins has a lower identifier than the vertex which the
outgoing link joins. (The vertex must be in a different actor and hence must have a
different identifier.) Otherwise the actor is active. If an actor is active and has more
than one outgoing link of the same cost and this cost is the lowest cost, the choice of
which to use for merging is non-determinate.

The algorithm is a version of the more general algorithm stated initially, so it must
terminate with a minimal spanning tree providing it does not deadlock and we do not
get a circuit of actors simultaneously merging and terminating. At any stage in the
computation there will be a link between two actors whose cost is less than or equal
to the cost of any other link and whose destination vertex has an identifier less than or
equal to that of any links of equal cost. The actor which has this link as an outgoing
edge will always be able to use it to send a merge message and terminate, reducing
the number of actors by one. Its destination actor must always be passive and thus
will eventually receive the message, hence the algorithm cannot deadlock.

Channels are unidirectional, so for any potential circuit every actor in the circuit will
have one incoming channel forming part of the circuit and one outgoing channel.
Unless all links in the circuit are of the same cost, there must be one actor which will
not participate in the circuit merger since its incoming circuit channel represents a
lower cost link than its outgoing circuit channel. It therefore remains passive or,
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should it have outgoing links to non-circuit actors of lower cost than its incoming
circuit link, merges with an actor not part of the circuit. The circuit may shrink but
will never totally merge and cause every one of its actors to terminate. The point will
eventually be reached where the circuit consists of two actors, each linked to the
other, one active and one passive. The active one will terminate, sending a merger
message. The passive one will receive the message and delete its link to the former
active actor before becoming active itself.

Consider, now, a potential circuit all of whose links are of the same cost. Taking into
account the unidirectionality of links, such a circuit cannot exist in the original graph,
since that would imply that every vertex in the circuit has an identifier greater than
the identifier of the vertex at the destination of its outgoing link in the circuit.
However, once merges take place circuits can form. If this occurs, there must be one
actor for which the incoming link that forms part of the circuit has the destination
vertex with the lowest identifier of any incoming link in the circuit. This actor will
not participate in the circuit merger, since its outgoing circuit link must be to a vertex
with a higher identifier.

As an example, the graph on the left of Figure 7.3.1 does not contain a circuit because
of the directionality imposed. However when the actors representing the vertices 1
and 5 are merged, giving the graph on the right, there is a potential circuit. Assuming
all edge costs are the same, there would not be a complete circuit merger. Because the
actor representing the vertices {1,5} has incoming edge {1,2}, destination 1 and
outgoing edge {5,4}, destination 4, it will remain passive as the vertex to which its
lowest cost incoming link connects has a lower identifier than the vertex to which its
lowest cost outgoing edge connects. In Figure 7.3.1, the bold integers are the vertex
identifiers, the italic integer pairs are the edge identifiers at their destinations. The
section enclosed within dotted lines on the left may be considered shrunk to a single
actor on the right (it should be noted that this shrinking records the edge used but
would delete any additional links if they existed).
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Fig. 7.3.1 Merging two subtrees

Below is a simple implementation in this in GDC. The initial state of the system is
assumed to be a collection of actors, one for each vertex. Each actor contains a list of
links to other actors, with their costs. A shared channel named Xij represents a link.
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This setup could easily be generated from a more basic description of the graph. In
the case of the graph in Figure 7.3.2 (in this case the bold integers are vertex
identifiers, the italic integers edge costs; no directionality is assumed at this stage),
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Fig. 7.3.2 Implemented example of minimal spanning tree

the initial set-up of actors will be as given:

:- vertex(1,[l(2,16,X12),l(3,10,X13)]),
vertex(2,[l(1,16,X12),l(3,17,X23),l(4,15,X24)]),
vertex(3,[l(1,10,X13),l(2,17,X23),l(5,23,X35)]),
vertex(4,[l(2,15,X24),l(5,20,X45)]),
vertex(5,[l(3,23,X35),l(4,20,X45)]).

The initialization must divide the links into incoming and outgoing links. The
incoming channels are merged, using the standard non-deterministic merge, to give
one channel that delivers all incoming messages to the actor. The outgoing channels
are kept separate with the record of the edges which each implements. The insertout
and insertin actors put the links in order of their cost (lowest cost first), in order of
destination vertex for those of equal cost:

vertex(V,Links) :- initialize(V,Links,[],[],[]).

initialize(V,[l(U,Cost,X)|Links],InChan,InLinks,OutLinks)
:- V>U
| insertout(out(V,U,Cost,X),OutLinks,OutLinks1),

initialize(V,Links,InChan,InLinks,OutLinks1).
initialize(V,[l(U,Cost,X)|Links],InChan,InLinks,OutLinks)

:- V<U
| merge(X,InChan,InChan1),

insertin(in(V,U,Cost),InLinks,InLinks1),
initialize(V,Links,InChan1,InLinks1,OutLinks).

initialize(V,[],InChan,InLinks,OutLinks)
:- active([V],[],InChan,InLinks,OutLinks).
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This would convert the representation of the graph above to:

:- merge(C12,C13,In1),
active([1],[],In1,[in(1,3,10),in(1,2,16)],[]),
merge(C23,C24,In2),
active([2],[],In2,[in(2,4,15),in(2,3,17)],[out(2,1,16,C12)]),
active([3],[],C35,[in(3,5,23)],[out(3,1,10,C13),out(3,2,17,C23)]),
active([4],[],C45,[in(4,5,20)],[out(4,2,15,C24)]),
active([5],[],[],[],[out(5,4,20,C45),out(5,3,23,C35)]).

Having initialized the system in this way, active checks whether an actor should
merge and terminate, or become passive and wait for a merger from another actor. In
the latter case, the clause for passive causes the actor to suspend until a merger
message arrives on its input. The append in passive’s subactors is standard list
append. The mergeinlinks and mergeoutlinks actors merge two sorted lists of
links, giving a sorted list as output. The deletein and deleteout actors take a list of
links and a list of vertices and delete from the list of links all those edges whose
second vertex is in the list of vertices. Merge messages take the form of a tuple
containing the vertices, edges, incoming links and outgoing links of the merging
actor. The following is the code for active and passive actors:

// Lowest cost link outgoing - send merge message:
active(Verts,Edges,InChan,[in(X1,Y1,N1)|InLinks],

[out(X2,Y2,N2,OutChan)|OutLinks])
:- N2<N1
| OutChan=[mergemess(Verts,[edge(X2,Y2)|Edges],

[in(X1,Y1,N1)|InLinks],OutLinks)|InChan].
// Lowest cost link incoming - wait for merge message:
active(Verts,Edges,InChan,[in(X1,Y1,N1)|InLinks],

[out(X2,Y2,N2,OutChan)|OutLinks])
:- N2>N1
| passive(Verts,Edges,InChan,[in(X1,Y1,N1)|InLinks],

[out(X2,Y2,N2,OutChan)|OutLinks]).
// Equal cost incoming and outgoing, outgoing has lowest
// destination vertex:
active(Verts,Edges,InChan,[in(X1,Y1,N1)|InLinks],

[out(X2,Y2,N2,OutChan)|OutLinks])
:- N2=N1,Y2<X1
| OutChan=[mergemess(Verts,[edge(X2,Y2)|Edges],

[in(X1,Y1,N1)|InLinks],OutLinks)|InChan].
// Equal cost incoming and outgoing, incoming has lowest
// destination vertex:
active(Verts,Edges,InChan,[in(X1,Y1,N1)|InLinks],

[out(X2,Y2,N2,OutChan)|OutLinks])
:- N2=N1,Y2>X1
| passive(Verts,Edges,InChan,[in(X1,Y1,N1)|InLinks],

[out(X2,Y2,N2,OutChan)|OutLinks]).
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// No more outgoing links:
active(Verts,Edges,InChan,[in(X,Y,N)|InLinks],[])

:- passive(Verts,Edges,InChan,[in(X,Y,N)|InLinks],[]).
// No more incoming links:
active(Verts,Edges,InChan,[],

[out(X,Y,N,OutChan)|OutLinks])
:- OutChan=[mergemess(Verts,[edge(X,Y)|Edges],

[],OutLinks)|InChan].
// No links at all: finished - print solution:
active(Verts,Edges,InChan,[],[])

:- write(’Solution : ’), writeln(Edges).

// Wait for message and carry out merger:
passive(Verts,Edges,[mergemess(VertsM,EdgesM,InLinksM,

OutLinksM)|InChan],InLinks,OutLinks)
:- append(Edges,EdgesM,NewEdges),

append(Verts,VertsM,NewVerts),
deletein(VertsM,InLinks,InLinks1),
deletein(Verts,InLinksM,InLinks2),
mergeinlinks(InLinks1,InLinks2,NewInLinks),
deleteout(VertsM,OutLinks,OutLinks1),
deleteout(Verts,OutLinksM,OutLinks2),
mergeoutlinks(OutLinks1,OutLinks2,NewOutLinks),
active(NewVerts,NewEdges,InChan,NewInLinks,NewOutLinks).

This is sufficient to describe the algorithm. Note that when an actor terminates and
sends a merge message, it appends its input stream to the merge message and thus
any further messages to it will be directed to the actor with which it merges. As a
convenience, the active actor adds its linking edge to the list of edges sent in its
merge message, rather than leaving it to the passive actor to add. It should be noted
that when deleteout deletes a link of the form out(X,Y,N,OutChan) it should set
OutChan to [] to cause the merge actor which takes OutChan as input to terminate
rather than remain indefinitely suspended. The linking edges are stored in simple
cost-ordered lists in order to give a simple program that emphasizes the methods that
have been introduced for avoiding circuits. Data structures such as those described by
Gabow et al. [1989] could be used to give a more efficient implementation.

In the example of Figure 7.3.2, once the conversion to passive of all those actors
with the lowest cost edge incoming is made, the situation is:

:- merge(C12,C13,In1),
passive([1],[],In1,[in(1,3,10),in(1,2,16)],[]),
merge(C23,C24,In2),
passive([2],[],In2,[in(2,4,15),in(2,3,17)],[out(2,1,16,C12)]),
active([3],[],C35,[in(3,5,23)],[out(3,1,10,C13),out(3,2,17,C23)]),
active([4],[],C45,[in(4,5,20)],[out(4,2,15,C24)]),
active([5],[],[],[],[out(5,4,20,C45),out(5,3,23,C35)]).

Note that unlike the graph-coloring problem, the program does not impose
synchronization; there is no concept of a cycle of execution during which a particular
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change is made to the graph. At any time during execution any active actor will be
able to execute and contribute a tree merger. The actual order of mergers is not
determined at program level, but is instead dependent on the underlying scheduling of
the language implementation. Thus, the actual solution obtained may vary as the
architecture is changed (for example, changing the number of processors used) as this
will change the scheduling. There was no such indeterminacy in the graph-coloring
problem, thus the solution given there was architecture independent.

In the example, any one of the three active actors could have ended and sent its
information as a message, or any two of them or all three simultaneously. For
simplicity, let us assume that just the first, as listed does. The information in the
process is packaged into a message and sent out on the channel representing the
lowest cost outwards link and linking this channel with its inwards channel, giving:

:- merge(C12,C13,In1),
passive([1],[],In1,[in(1,3,10),in(1,2,16)],[]),
merge(C23,C24,In2),
passive([2],[],In2,[in(2,4,15),in(2,3,17)],[out(2,1,16,C12)]),
C13=[mergemess([3],[edge(3,1)],[in(3,5,23)],out(3,2,17,C23))|C35],
active([4],[],C45,[in(4,5,20)],[out(4,2,15,C24)]),
active([5],[],[],[],[out(5,4,20,C45),out(5,3,23,C35)]).

The message is passed on to the actor with which it merged, representing a merger of
the tree containing just node 3 with the tree containing just node 1, to give a tree
containing nodes {1,3} and one edge, {1,3}. Following reception of the message and
its passing through the merge actors, the situation is:

:- merge(C12,C35,In11),
passive([1],[],In11,[mergemess([3],[edge(3,1)],[in(3,5,23)],

[out(3,2,17,C23)])|In11],[in(1,3,10),in(1,2,16)],[]),
merge(C23,C24,In2),
passive([2],[],In2,[in(2,4,15),in(2,3,17)],[out(2,1,16,C12)]),
active([4],[],C45,[in(4,5,20)],[out(4,2,15,C24)]),
active([5],[],[],[],[out(5,4,20,C45),out(5,3,23,C35)]).

And after completion of the merger (note the removal from the list of input vertices
of the {1,3} edge), with the receiving actor becoming active, the situation becomes:

:- merge(C12,C35,In11),
active([1,3],[edge(3,1)],In11,[in(1,2,16),in(3,5,23)],[out(3,2,17,C23)]),
merge(C23,C24,In2),
passive([2],[],In2,[in(2,4,15),in(2,3,17)],[out(2,1,16,C12)]),
active([4],[],C45,[in(4,5,20)],[out(4,2,15,C24)]),
active([5],[],[],[],[out(5,4,20,C45),out(5,3,23,C35)]).

However, as the new merged actor’s lowest cost link is incoming, it becomes passive
again, leading to a situation in which there are two active actors which may merge:
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:- merge(C12,C35,In11),
passive([1,3],[edge(3,1)],In11,[in(1,2,16),in(3,5,23)],[out(3,2,17,C23)]),
merge(C23,C24,In2),
passive([2],[],In2,[in(2,4,15),in(2,3,17)],[out(2,1,16,C12)]),
active([4],[],C45,[in(4,5,20)],[out(4,2,15,C24)]),
active([5],[],[],[],[out(5,4,20,C45),out(5,3,23,C35)]).

Suppose the first of these merges takes place:

:- merge(C12,C35,In11),
passive([1,3],[edge(3,1)],In11,[in(1,2,16),in(3,5,23)],[out(3,2,17,C23)]),
merge(C23,C24,In2),
passive([2],[],In2,[in(2,4,15),in(2,3,17)],[out(2,1,16,C12)]),
C24=[mergemess([4],[edge(4,2)],[in(4,5,20)],[])|C45],
active([5],[],[],[],[out(5,4,20,C45),out(5,3,23,C35)]).

But this time, suppose the other active actor turns itself into a message at the same
time, giving:

:- merge(C12,C35,In11),
passive([1,3],[edge(3,1)],In11,[in(1,2,16),in(3,5,23)],[out(3,2,17,C23)]),
merge(C23,C24,In2),
passive([2],[],In2,[in(2,4,15),in(2,3,17)],[out(2,1,16,C12)]),
C24=[mergemess([4],[edge(4,2)],[in(4,5,20)],[])|C45],
C45=[mergemess([5],[edge(5,4)],[],[out(5,3,23,C35)])].

The result will be that the second passive actor will have two incoming messages to
deal with. In this case, one follows the other on a single incoming stream, so there is
no indeterminacy. In another case the situation may arise where there are two
separate messages coming from different channels, in which case which is dealt with
first is resolved in the indeterminacy handling of merge. In this case, the situation is:

:- merge(C12,C35,In11),
passive([1,3],[edge(3,1)],In11,[in(1,2,16),in(3,5,23)],[out(3,2,17,C23)]),
passive([2],[],[mergemess([4],[edge(4,2)],[in(4,5,20)],[]),

mergemess([5],[edge(5,4)],[],[out(5,3,23,C35)])|C23],
[in(2,4,15),in(2,3,17)],[out(2,1,16,C12)]).

Dealing with the first merger gives:

:- merge(C12,C35,In11),
passive([1,3],[edge(3,1)],In11,[in(1,2,16),in(3,5,23)],[out(3,2,17,C23)]),
active([2,4],[edge(4,2)],

[mergemess([5],[edge(5,4)],[],[out(5,3,23,C35)])|C23],
[in(2,3,17),in(4,5,20)],[out(2,1,16,C12)]).

Here the lowest cost link is outgoing, at a cost of 16, so the second input message in
fact is not dealt with, but is placed on the channel behind the message which the
active actor turns itself into:
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:- merge(C12,C35,In11),
passive([1,3],[edge(3,1)],In11,

[in(1,2,16),in(3,5,23)],[out(3,2,17,C23)]),
C12= [mergemess([2,4],[edge(2,1),edge(4,2)],

[in(2,3,17),in(4,5,20)],[]),
mergemess([5],[edge(5,4)],[],[out(5,3,23,C35)])|C23].

This leads to the situation where there is a single actor left with two merge messages
to deal with:

:- merge(C23,C35,In12),
passive([1,3],[edge(3,1)],

[mergemess([2,4],[edge(2,1),edge(4,2)]),
[in(2,3,17),in(4,5,20)],[]),
mergemess([5],[edge(5,4)],[],[out(5,3,23,C35)])|In12],
[in(1,2,16),in(3,5,23)],[out(3,2,17,C23)]).

When the first of these messages is dealt with, joining the tree containing vertices
{1,3} with the tree containing vertices {2,4} along edge(2,1), the higher cost
edge(2,3) which links these two trees is deleted and the channel representing it,
C23, set to []. The result is:

:- merge([],C35,In12),
active([1,3,2,4],[edge(3,1),edge(2,1),edge(4,2)],

[mergemess([5],[edge(5,4)],[],[out(5,3,23,C35)])|In12],
[in(4,5,20),in(3,5,23)],[]).

It can be seen that the setting of the channel representing the deleted edge to [] is
necessary to cause the merge to terminate correctly. Handling the final merger
message causes the tree containing just the node 5 to be linked with the tree
containing the nodes {1,2,3,4} along edge(5,4) and deletes the other edge linking
these two trees, edge(3,5). This gives the final situation:

:- active([1,3,2,4,5],[edge(3,1),edge(2,1),edge(4,2),edge(5,4)],[],[],[]).
which reports the set of edges:

[edge(3,1),edge(2,1),edge(4,2),edge(5,4)]
as a minimal spanning tree for the graph.

The dynamic handling of channels was important in this program. Merger messages
themselves contain channels which could be used to send further merger messages.
Messages that are sent to one actor could be dynamically sent on to another as the
progress of the algorithm changes the actor structure. For example, note how the
merger of the tree containing just the node 5 was originally sent to the actor
representing the tree containing just the node 4, but was eventually dealt with by the
combined actor representing the nodes {1,2,3,4}.

7.4 Conclusion

This chapter began with a brief discussion of Distributed Artificial Intelligence.
Underlying a DAI system is the idea of a network of actors linked by communication
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channels, which together work towards finding a solution. There is no overall co-
ordination actor, nor do actors interact in any way except through an exchange of
messages in a way dictated by some form of message language and “social laws” of
interaction. There are various reasons for taking this approach. In some cases it may
be built on top of a system which is physically distributed. In some cases, the most
natural way of approaching a problem may be to break it up into distributed loosely
linked components. This is the motivation behind object-oriented programming. In a
deeper way it is behind Brooks’ [1991] criticisms of symbolic AI which argues that
artificial intelligence is better built not from a top-down approach but seen as a
property which emerges from a chaotic collection of competing behaviors. (A
Russian team [Okhotsimski 79] had this insight earlier, complete the idea later
popularized by Brooks of building artificial insect-like robots.) In other cases, the
main motivation behind seeking a distributed way of solving a problem is to use it to
exploit the potential of speedup obtainable by mapping it onto a distributed
architecture. Given the high costs of communication in a distributed architecture it is
important to be able to minimize communication by avoiding any form of central
structure, whether that be a centralized control mechanism or a shared memory,
which would act as a bottleneck.

It is not possible in a work of this size whose main purpose is to describe a particular
programming language to give extensive details on large-scale distributed systems.
However, something of the nature of a distributed problem solving approach has been
demonstrated by considering three graph problems. A common approach to these
problems is a solution involving an actor mechanism that directly reflects the graph
itself: actors represent vertices and communication channels between actors represent
arcs between vertices. The programs for each of these problems were simple enough
to be given in their entirety and for traces of the problem being solved with a small
graph to be given. The fact that these programs do not have a central bottleneck
means that scaling them up is less of a problem than often has been the case for AI
programs.

Kahn and Miller [1988] argue that the concurrent logic languages are one of the few
programming language paradigms which are capable of effectively tackling the
problems associated with large-scale open distributed systems, supporting the
definition of robust servers and dynamic ways of creating, removing, synchronizing
and linking them together. They define the terms:

omniscience – the ability to access all of some category of information defined
without reference to where the information originates or is stored and

omnipotence – the similar ability to modify such categories of information

as properties which most programming languages attempt to implement but must fail
in a distributed open system. Global name spaces are given as the major culprit in
preventing scalability to large scale distributed systems and collections of agents. It
can be seen that what at first seem to be the weaknesses of concurrent logic
programming – its failure to offer any form of omniscience or omnipotence is in fact
its strength. Its additional strength is the ease with which it expresses dynamic
behavior of multi-actor systems without the need for large amounts of heavy syntax.
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The graph programs presented above were simple to express in GDC, indeed the
simplicity of the programs enabled us to improve the algorithms by working on
improving the efficiency of the programs. They demonstrate different aspects of the
language. The first two problems, shortest paths and graph coloring have a static
actor structure, but the shortest-path problem is asynchronous whereas graph-coloring
is synchronous. The graph-coloring problem demonstrates synchronization achieved
not by a central synchronizing mechanism but by the protocol of the individual actors
for the interchange of messages. The third problem, minimal-spanning trees,
demonstrates a dynamic actor structure and, in particular, shows an example of a
program where the ability to treat channels as first class values, which may
themselves be passed as arguments in messages is crucial to success.
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Chapter 6

Concurrent Search

Half the money I spend on advertising is wasted, and the trouble is
I don’t know which half.

Lord Leverhulme (1851–1925)

As noted in Chapter 1, search had a prominent role in the beginning of artificial
intelligence. Early textbooks on the subject (e.g. [Nilsson, 1971]) devote a great deal
of space to search. Improved search methods were considered worthy subjects for
inclusion in artificial intelligence conferences and journals. While consideration of
search in the abstract has tended to move from the field of artificial intelligence to
mainstream computer science and operational research, search continues to be an
important tool for artificial intelligence practitioners. Parallel and distributed search
continues to be an active field of research in computer science, much of the interest
coming from the fact that search algorithms designed for sequential computers rarely
map easily onto distributed and parallel architectures. The challenge for programming
language design is to invent languages which free the programmer from having to
consider low level details of the parallel architecture. This allows the programmer to
concentrate on the more abstract aspects of concurrent algorithms, while retaining
sufficient control to efficiently exploit the parallelism available in the architecture.

In logic programming, Prolog was notable for incorporating a search mechanism as a
built-in part of the language. The indeterministic logic languages have been criticized
for abandoning this built-in search, resulting in various attempts to create hybrid
languages that can revert from indeterminism to nondeterminism [Clark and Gregory,
1987; Haridi, 1990]. However, the lesson that can be learned from any good Prolog
textbook (e.g. [O’Keefe, 1990]) is that Prolog’s built-in search is often subverted and
search explicitly programmed. Thus, it is the ability to program search in Prolog
rather than its built-in search that makes it suitable for artificial intelligence
programming. Stream parallel logic languages inherit this metaprogramming ability.
This chapter builds on this theme and further explores the nature of the stream
parallel logic languages, by developing some simple search programs.

6.1 A Naive Prolog Solution to the 8-Puzzle

The 8-puzzle is a familiar example used to illustrate state space search problems

[Nilsson, 1971]. The problem consists of a 3×3 matrix of eight cells marked with the
numbers “1” to “8” and one space. A state of the puzzle is represented by a particular
matrix of the cells. The successors of a state are generated by up to four different
ways in which a marked cell may be moved into the space. Only if the space is in the
center will there be four successors. The actions of marked cells turn out to be more
conveniently thought of as actions of the space: left, right, up and down. A solution to
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the puzzle is a sequence of actions that will transform some initial state to some
desired goal state. The goal state conventionally used is shown if Figure 6.1.1.

An arbitrary initial state is given in Figure 6.1.2. There are three possible actions
from this state with the three successor states given in Figure 6.1.3. A complete
solution to the 8-puzzle with the given initial state is the sequence of actions

[left, down, right, down, right, up, left].

In abstract, this problem is similar to the onTree problem of Chapter 3, where the
nodes in the tree are the states and their descendants are the states obtainable from
them by legal actions. In the present case, however, the tree is constructed
dynamically while it is searched. Part of the search tree for the problem above,
including the sequence of actions taken to reach the leaves is given below in Figure
6.1.4.

1 2 3

4

567

8

Fig. 6.1.1. The goal state of 8-puzzle

2 8 3

1 5

7

4

6

Fig. 6.1.2 An arbitrary initial state of the 8-puzzle
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2 8 3
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Right     

2 8 3

1 5

7 4 6

Down

Fig. 6.1.3 Successor states
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2 8 3
1 4 5
7 6

2 8 3
1 4 5
7 6

L

2 8 3
1 4 5

7 6
R

2 8 3
1 5
7 4 6

D

2 8 3
1 4
7 6 5

LD

2 8 3
4 5

1 7 6

RD

2 3
1 8 5
7 4 6

DD

2 8 3
1 5

7 4 6
DR

2 8 3
1 5
7 4 6

DL

2 8 3
1 4
7 6 5

LDR

2 8
1 4 3
7 6 5

LDD

2 8 3
4 5
1 7 6

RDL

2 8 3
4 5

1 7 6
RDD

2 8 3
1 5 6
7 4

DLU

2 8
1 5 3
7 4 6

DLD

2 8 3
7 1 5

4 6
DRU

8 3
2 1 5
7 4 6

DRD

2 3
1 8 5
7 4 6

DDL

2 2 3
1 8 5
7 4 6

DDR

Fig. 6.1.4 Search tree for the 8-puzzle to depth 3

Consider a naive Prolog program to solve this puzzle:

search(State,State) :– goal(State).
search(State, Soln) :– left(State,Left), search(Left,Soln).
search(State, Soln) :– right(State,Right), search(Right,Soln).
search(State, Soln) :– up(State,Up), search(Up,Soln).
search(State, Soln) :– down(State,Down), search(Down,Soln).

The predicates left, right, up and down give the successor states of the state given
as their first argument, or fail if there is no such successor state.

This program, though declaratively correct, will most likely fail to terminate since it
will perform a depth-first search of a tree with infinite branches. To avoid this, the
information stored by each state can be extended to include the sequence of actions
used to reach the state from the initial state and the predicates refined to fail if the
successor is a previously encountered state. This would limit search to a finite tree,
but would still be grossly inefficient. There are well known heuristics to better direct
the search for this problem [Nilsson, 1971]. The naive program works poorly because
it transfers the built-in left-to-right depth-first scheduling of Prolog directly to the
search of the problem that really requires a more sophisticated scheduling.

Notwithstanding the naive nature of the program above, consider a similar solution in
GDC:

search(nostate,Soln) :- Soln=none.
search(State,Soln) :- State=/=none

| isgoal(State,Flag), expand(Flag,State,Soln).
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expand(true,State,Soln) :- Soln=State.
expand(false,State,Soln)

:- left(State,Left), search(Left,SolnL),
right(State,Right), search(Right,SolnR),
up(State,Up), search(Up,SolnU),
down(State,Down), search(Down,SolnD),
choose(SolnL,SolnR,SolnU,SolnD,Soln).

choose(SolnL,_,_,_,Soln) :- SolnL=/=none | Soln=SolnL.
choose(_,SolnR,_,_,Soln) :- SolnR=/=none | Soln=SolnR.
choose(_,_,SolnU,_,Soln) :- SolnU=/=none | Soln=SolnU.
choose(_,_,_,SolnD,Soln) :- SolnD=/=none | Soln=SolnD.
choose(none,none,none,none,Soln) :- Soln=none.

A number of points may be noted. Firstly, the OR-parallelism, which was implicit in
the Prolog program, is converted to GDC AND-parallelism with the termination of
any of the OR-parallel branches indicated by the return of the dummy solution none.
Secondly, the actor choose is introduced to make an indeterminate choice between
solutions in OR-parallel branches, returning none if no sub-branch returns a solution.
This technique of converting conceptually OR-parallelism to AND-parallelism is a
cliché in concurrent logic programming, proposed by Codish and Shapiro [1986] and
Gregory [1987]. In fact, the same technique is frequently used in Prolog.

Returning all solutions to a problem where a solution is obtainable by method A or
method B is equivalent to combining the solutions obtained from method A and
method B. The Prolog all-solutions program for this problem is:

search(nostate,[]) :- !.
search(State,[State]) :- goal(State),!.
search(State,Solns) :-

left(State,Left), search(Left,SolnsL),
right(State,Right), search(Right,SolnsR),
up(State,Up), search(Up,SolnsU),
down(State,Down), search(Down,SolnsD),
append4(SolnsL,SolnsR,SolnsU,SolnsD,Solns).

where append4 simply appends its first four arguments to give its fifth. It is
assumed that rather than fail, left(State,Left) will bind Left to nostate if there is no
left successor state and likewise with the other actions. The same assumption is made
in the original GDC program. The closeness of the two programs is apparent. The
main difference is the use of choose as an-indeterministic OR operation picking one
of its inputs, as compared with append4, an AND operation which combines its
inputs. This is due to the flat nature of GDC: backtracking has to be replaced by an
explicit choice. The Prolog test predicate goal is converted to the GDC actor isgoal,
which returns true or false in a second argument. This is combined with the
introduction of a new actor to cover the search beyond the test, which takes the
Boolean value from isgoal and reacts appropriately. For simplicity, it is assumed
that goal states in the search tree are leaves. Hence the cut in the Prolog program is a
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green cut. A more complex Prolog program would be required to deal with cases
where goal states in the search tree have descendants that are also goal states.

The choose actor explicitly represents the independent binding frames for each non-
determinately choosable behavior which are implicit in the Prolog program. This
corresponds to the onEither actor of Chapter 3. The indeterminism of GDC maps
directly onto an indeterministic choice of solutions. The nondeterminism of Prolog is
managed by cutting back the binding frame stack on backtracking. In an OR-parallel
logic language an unbound channel, like the one that returns the solution in our
search example, is duplicated for each OR-parallel computation. Explicit distinct
channels in the GDC program replace this implicit copying. It will be assumed that:

:- choose(SolnL,SolnR,SolnU,SolnD,Soln)

is reducible as soon as any of its first four arguments are bound to anything but none,
or when all its first four arguments are bound to none.

The result of executing the GDC program will be to create a tree of choose actors,
replicating the search tree of the problem. The actor search(State,Soln) will first
reduce to

:- isgoal(State,Flag), expand(Flag,State,Soln).

If isgoal(State,Flag) causes Flag to be bound to true, following the reduction of
expand(Flag,State,Soln) the situation will be as in Figure 6.1.5.

choose

search search search search

Soln

SolnUSolnR
SolnL SolnD

Left Right Up Down

Fig. 6.1.5 Tree of search actors

This is the diagrammatic representation of Chapter 4, where the nodes are actors and
the arcs communication channels. Unless either a goal node is found or no successor
states are generated, each of the descendants of the root choose actor will become a
further choose actors and so on.

The major difficulty with the program given is that the number of actors will grow
exponentially, until any practical distributed or parallel architecture would be
overwhelmed. In problems like this there are usually heuristics which indicate a goal
state is more likely to be found in one subtree than another, but in GDC as described
so far there is no way of giving preference between leaves in the search tree to
expand.
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search

search
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Fig. 6.1.6 Recursive tree of search actors

6.2 Speculative Parallelism

Another problem with the naive GDC search program is that it omits to describe a
mechanism for halting actors that are not going to contribute to a solution. As soon as
any of the first four arguments of the actor

:- choose(SolnL,SolnR,SolnU,SolnD,Soln)

is bound to something other than none, it reduces and the continuing execution
which is determining the values of the other arguments is redundant. This sort of
parallelism is known as speculative parallelism, since in effect any computation of
the solution returned from a subtree is a speculation on that solution being necessary
for the overall solution. In an ideal parallel architecture, we speculate because we
have nothing to lose – the processors engaged on the speculative computation would
otherwise be idle. In practice, the overhead of managing speculative parallelism
means that it is too glib to say there is “nothing to lose”. Speculative parallelism
should only be engaged in if the likelihood of it being needed outweighs the
overhead. As shown by Lai and Sahni [1984], in a search on a multiprocessor system
where there are more possible node expansions than processors and node expansion
choice is guided by heuristics, even in the absence of communication overheads it is
possible for anomalous results to occur. These range from slowdowns to speedups
greater than the number of processors. These anomalies are discussed in Section 6.9.
Given that in practice there are a limited number of processors available, it makes
sense to cut off work known to be unnecessary. Processors that are available can be
dedicated to work that is known to be necessary (to avoid speculation) or has not
been shown to be unnecessary (allowing speculation).

Grit and Page [1981] discuss the possibilities of incorporating a mechanism into a
functional programming language for automatically cutting off speculative
computations which have been found unnecessary. Without this sort of facility such a
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mechanism must be programmed in explicitly by the programmer. This problem is
analogous to the consideration of whether garbage collection should be automatic or
programmer-defined. It is essential that any mechanism that passes on the
information that a solution has been found has priority over further computations.
Otherwise, there is the possibility of actors in the search tree monopolizing the
computational resources even though actors elsewhere in the search tree could show
them to be redundant. The monopolization would prevent the message notifying that
these are redundant being sent. This situation might aptly be described as livelock.

Speculative parallelism is associated particularly with OR-parallelism [Burton, 1988],
indeed, it could be argued that the two are the same thing, the former term being used
in a functional language context, the latter in a logic language context. However, as
our search example shows, speculative parallelism is a real issue in AND-parallel
languages, since metapredicates like choose which make OR choices between their
arguments can be exploited. These might be considered generalizations of functional
programming’s cond operator [Turner, 1979]. This operator has three arguments, a
Boolean V and A and B, evaluating to A if V evaluates to true and to B if V evaluates
to false.

In functional languages, the operation cond is usually evaluated lazily, that is its
second and third arguments are not evaluated before the condition is evaluated. A
similar suspension of evaluation can be programmed in GDC using its suspension
mechanism:

eval_cond_lazily(V,A,B,Val)
:- eval(V,VVal),

cond(VVal,A,B,Val).

cond(true,A,_,Val) :- eval(A,Val).
cond(false,_,B,Val) :- eval(B,Val).

This is not full lazy evaluation, since either A or B is evaluated rather than returned as
an unevaluated reference, but for now it serves to illustrate the point. Speculative
parallelism in functional languages requires a rejection of the evaluate cond lazily
convention, generally involving special language constructs. No special mechanisms
are required in GDC:

eval_cond_speculatively(V,A,B,Val)
:- eval(V,VVal), eval(A,AVal), eval(B,BVal),

cond(VVal,AVal,BVal,Val).

cond(true,AVal,_,Val) :- Val=AVal.
cond(false,_,BVal,Val) :- Val=BVal.

It is clear here that eval_cond_lazily and eval_cond_speculatively represent
two extremes: in the former no potential parallelism is exploited; in the latter
parallelism is exploited perhaps inappropriately. In fact, although it is made clear
above, these two opposite approaches to potential speculative parallelism may occur
less obviously in GDC programs in that general and fairly subtle changes to a
program may cause a switch from overabundant parallelism to no parallelism at all.
This is one of the reasons why, as noted in [Tick and Ichiyoshi, 1990], a
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straightforward translation of a sequential logic program to a concurrent logic
program does not always result in a good parallel program. The issue of over
abundant versus no parallelism is discussed in further detail later in this chapter.

6.3 Non-speculative Non-parallel Linear Search

Note that a simple attempt to remove the speculative element from our search
program can result in losing parallelism in the search altogether. For example, the
following GDC program for the 8-puzzle starts search of one branch of the tree only
if no solution has been found in the previous branch:

search(nostate,Soln) :- Soln=none.
search(State,Soln) :- State=/=nostate

| isgoal(State,Flag), expand(State,Flag,Solution).

expand(true,State,Soln) :- Soln=State.
expand(false,State,Soln)

:- lsearch(State,Soln1),
rsearch(Soln1,State,Soln2),
usearch(Soln2,State,Soln3),
dsearch(Soln3,State,Soln).

lsearch(State,Soln)
:- left(State,Left), search(Left,Soln).

rsearch(none,State,Soln)
:- right(State,Right), search(Right,Soln)

rsearch(InSoln,State,Soln) :- InSoln=/=none | InSoln=Soln.

usearch(none,State,Soln)
:- up(State,Up), search(Up,Soln).

usearch(InSoln,State,Soln) :- InSoln=/=none | InSoln=Soln.

dsearch(none,State,Soln)
:- down(State,Down), search(Down,Soln)

dsearch(InSoln,State,Soln) :- InSoln=/=none | InSoln=Soln.
This will result in a strict depth-first left-to-right search of the tree. Consideration of
any actor in the tree is suspended on the result of the previous one in the search order.
The actor structure created by execution will be a chain of actors, all except for the
first waiting for either a solution or none message. In the former case, the solution is
passed straight down the chain and its length is reduced by one. In the latter the front
of the chain is expanded. This can be compared with the stack of actors described in
Chapter 5. After the first expansion, the actor is shown in Figure 6.3.1.
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lsearch rsearch usearch dsearch
Soln1 Soln2 Soln3

Soln

State

Fig. 6.3.1 Actor structure after the first expansion

After the next expansion the actor structure is depicted in Figure 6.3.2. This form of
search program is called linear search from the linear form the actors link into during
execution. In effect, the actors linked by channels are equivalent to a linked list
forming a stack of states that would be formed in conventional depth-first search of a
tree.

lsearch rsearch usearch dsearch

rsearch usearch dsearch
Soln2 Soln3

Soln

State

Left

Soln1

Soln1´ Soln2´ Soln3´

Fig. 6.3.2 Actor structure after the second expansion

6.4 A Practical Prolog Solution to the 8-Puzzle

In practice, Prolog programs for search problems, where left-to-right depth-first
search is not the optimal strategy, abandon attempts to effect the search by Prolog’s
built-in search mechanism. Instead, a metaprogramming approach is used, in which
some explicit representation of the global search space is manipulated. This gives us
the following Prolog program for the 8-puzzle, in which search is specifically
programmed:

search([State|States],State) :– goal(State).
search([State|States],Soln) :–

left(State,Left), right(State,Right),
up(State,Up), down(State,Down),
insert(Left,States,States1), insert(Right,States1,States2),
insert(Up,States2,States3), insert(Down,States3,States4),
search(States4,Soln).
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Like previous programs, this one simulates disjunction in the problem with
conjunction in the program. The first argument to the search predicate is a list of
states representing the frontier of the search – the leaf nodes of the search tree. It will
be assumed that insert inserts a state into its appropriate place in the list. It will also
be assumed that left, right, up and down return the dummy value none for those
states that do not lead to a successor or where the successor to which they lead has
already occurred as an intermediate state. Attempting to insert none into the list of
states leaves the list unchanged. The program is initially called with the list of states
consisting of just the initial state as its single element.

The reason such a program is preferred is that it is generally possible to find
heuristics [Pearl, 1984] which are estimates of the likely cost of a solution through
any state. The list of states is kept in order of the heuristic value for each state, so
that, in the above program, insert maintains the active list of states in heuristic order.
A simple heuristic, the Manhattan distance, in the 8-puzzle is to count the number of
cells each cell is away from its goal position. (Those familiar with this puzzle will
know that this heuristic, while useful, is not accurate. It is sometimes necessary to
move a cell away from its correct position in order to make corrections elsewhere and
then move it back again.) Using this simple heuristic is an improvement on the fixed
search order of Prolog.

The Prolog metaprogramming program is already very close to a GDC solution. The
only backtracking involved is in the testing for goal states. This is also the only case
of output by unification. Removing this gives the GDC version:

search([State|States],Soln)
:− isgoal(State,Flag), expand(Flag,State,States,Soln).

expand(true,State,States,Soln) :− Soln=State.
expand(false,State,States,Soln)

:− left(State,Left), right(State,Right),
up(State,Up), down(State,Down),
insert(Left,States,States1, insert(Right,States1,States2),
insert(Up,States2,States3), insert(Down,States3,States4),
search(States4,Soln).

This program is deceptive. It appears to offer concurrent heuristic search. In fact, it is
a good example of the problem of parallelism disappearing. An actor

:- search(States1,Soln)
will only reduce to

:- isgoal(State,Flag), search1(Flag,State,States,Soln)

when States1 has become bound to [State|States]. This means that although the
four descendant states of State can all be calculated concurrently, any further state
expansion is left until the head of the subsequent list of actors is known: that is, after
all the insertions. The actor search(States4,Soln) will not reduce until that is the
case. Any search before this would have to speculate on which goals would be at the
head of the list.
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Concurrency can be pursued a little further with the above approach. Suppose there
are N processors available and we use actor mapping notation of Chapter 4. The actor
actor(Args)@p, 1<p<N, indicates that actor(Args) should be executed on
processor p. Then, the first N states in the list can be expanded simultaneously,
distributing each state to a separate processor. Expanding only the first state gives the
following program:

search(N,States,Soln)  
:− distribute(N,States,OutStates,Soln1),

search_if_no_soln(N,Soln1,OutStates,Soln).

search_if_no_soln(N,none,States,Soln)  
:− search(N,States,Soln).

search_if_no_soln(N,Soln1,States,Soln) :− Soln1=/=none
| Soln=Soln1.

distribute(N,[State|States],OutStates,Soln) :− N>0, N1:=N–1
| try_state(State,OutStates1,OutStates,Soln1)@N,

distribute(N1,States,OutStates1,Soln2),
choose(Soln1,Soln2,Soln).

distribute(0,States,OutStates,Soln)
:− OutStates=States, Soln=none.

distribute(N,[],OutStates,Soln) :− OutStates=[], Soln=none.

choose(none,none,Soln) :− Soln=none.
choose(Soln1,_,Soln) :− Soln1=/=none | Soln=Soln1.
choose(_,Soln1,Soln) :− Soln1=/=none | Soln=Soln1.

try_state(State,InStates,OutStates,Soln)
:− isgoal(State,Flag),

expand(Flag,State,InStates,OutStates,Soln).

expand(true,State,InStates,OutStates,Soln)
:− Soln=State, OutStates=InStates.

expand(false,State,InStates,OutStates,Soln)
:− left(State,Left), right(State,Right),

up(State,Up), down(State,Down),
insert(Left,InStates,States1),
insert(Right,States1,States2),
insert(Up,States2,States3),
insert(Down,States3,OutStates),
Soln=none.

There are several problems with this program. Firstly, it is dependent on a specific
architecture: one in which all processors may be accessed from a central controller,
although it does allow flexibility in the number of processors. Secondly, it involves
considerable communication costs: at each cycle states are sent out to each processor
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and their descendants are collected together again on one processor. Thirdly, it does
not give optimal use of the multiprocessors. If one processor finishes work on the
state it has been sent while the others are still busy, it cannot go on to search further
states. Rather, it must wait until all processors have finished and work is distributed
again. The main problem, however, is that it does not separate algorithm from
control. The abstract consideration of expanding the search tree is mixed up with the
lower level control considerations. The resulting program is a long way removed
from the abstract control-free program we started with. It would be preferable to start
with a simple declarative program and add annotations, where necessary, to obtain a
practical parallel program.

This latest program may be regarded as a metaprogramming solution to the problem,
since the actual tree expansion of the task can be considered a metaprogram running
on top of the main program which covers the control aspect. The metaprogramming
aspect would become even more dominant on a more complex architecture such as a
distributed network of processors. Taking this metaprogramming approach further
leads to the replicated worker approach to parallel search [Bal, 1991].

6.5 A Generic Search Program

Before continuing, let us generalize the 8-puzzle to a general search problem into
which actors could, as necessary, be instantiated to specialize an 8-puzzle or any
other state-space search. An actor isgoal(State,Flag) is needed which takes the
representation of a state in the search and sends true on Flag if it is a goal state and
false otherwise. In addition, an actor successors(State,Succs) is needed which
sends the list of successor states of State on Succs. This will give us the following
general declarative search program:

search(State,Sols) :- isgoal(State,Flag), expand(Flag,State,Sols).

expand(true,State,Sols) :- Sols=[State].
expand(false,State,Sols)

:- successors(State, Succs), branch(Succs, Sols).

branch([], Sols) :- Sols=[].
branch([State|Siblings], Sols)

:- search(State,Sols1),
branch(Siblings,Sols2),
combine(Sols1,Sols2,Sols).

The italic combine is meant to indicate that a number of different actors could be
put here, resulting in a variety of search programs with different properties.

To get a behavior similar to the initial search program, a simple indeterminate
choose actor, similar to before, is used for combine except it takes only two
inputs:
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choose([Sol], _, OutSols) :- OutSols=[Sol].
choose(_, [Sol], OutSols) :- OutSols=[Sol].
choose([], Sols, OutSols) :- OutSols=Sols.
choose(Sols, [], OutSols) :- OutSols=Sols.

Note that in the place of the previous none, the empty list [] is used and the solution
is returned inside a single element list. This enables us to obtain a greater variety of
programs, including multiple solution programs just by varying combine.

The result of using choose for combine is that program execution will result in a
binary tree of choose processes. This represents the search tree of the problem using
the standard n-ary to binary tree mapping that can be found in any good data
structures textbook. The left branch represents the relationship first child and the right
branch the relationship next sibling. Declaratively, the solution obtained is as before,
though pragmatically the change would mean that the bias between indeterminate
choices would change the likelihood of any particular solution being returned in the
case of multiple solutions. For example, if a solution is obtainable through all four
branches of the 8-puzzle and the choice is made when all four solutions are available,
time-related factors can be discounted. In our initial program, there appears to an
equal chance of any of the four solutions being returned. In this version, the first
solution has only to get through one choose, the second has to get through two and
the third and fourth through three. So there is a 50% chance of the first solution being
returned, a 25% chance of the second and a 12.5% chance for each of the third and
fourth.

If combine is standard list append, the output will be all solutions in left-to-right
order from the search tree. If it is stream merger, the output will be all-solutions in an
indeterminate order, but ignoring communications factors, in the order in which they
are found temporally. Other possibilities are:

leftmost([Sol], _, OutSols) :- OutSols=[Sol].
leftmost([], Sols, OutSols) :- OutSols=Sols.

which will result in the leftmost solution in the search tree being returned and
indeterminate(Sols, _, OutSols) :- OutSols=Sols.
indeterminate(_, Sols, OutSols) :- OutSols=Sols.

which maps the indeterminacy of GDC straight into an indeterminate return of any
solution. (This is not an option to be considered unless every leaf in the search tree is
a solution!). If there are costs associated with solutions and cost(Sol,Cost) gives the
associated cost, then using lowestcost as given below for combine will result in
the lowest cost solution being returned:

lowestcost([], Sols, OutSols) :- OutSols=Sols.
lowestcost(Sols, [], OutSols) :- OutSols=Sols.
lowestcost([Sol1], [Sol2], OutSols)

:- cost(Sol1,Cost1), cost(Sol2,Cost2),
cheapest(Sol1, Cost1, Sol2, Cost2, Sol), OutSols=[Sol].

cheapest(Sol1,Cost1,_,Cost2,Sol) :- Cost1<Cost2 | Sol=Sol1.
cheapest(_,Cost1,Sol2,Cost2,Sol) :- Cost1>=Cost2 | Sol=Sol2.
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A generic version of the linear search program may also be written, using the
principle that a branch in the tree is searched only if search of the branch to its left
has completed and no solution was found in it. Unlike the linear search version of the
8-puzzle, however, this program generates the successors of a node in advance rather
than when needed:

search(State,Sols)
:- isgoal(State,Flag),

expand(Flag,State,Sols).

expand(true,State,Sols) :- Sols=[State].
expand(false,State,Sols)

:- successors(State, Succs), branch(none, Succs, Sols).

branch(Sol1, [], Sol) :- Sol=Sol1.
branch(Sol1, _, Sol) :- Sol1=/=none, Sol=Sol1.
branch(none, [State|Siblings], Sol)

:- search(State, Sol1),
branch(Sol1, Siblings, Sol).

The all-solutions program which instead of appending lists of solutions adds them to
an accumulator, is a form of linear search. Rather than have a separate combine
actor, the solutions from one branch are passed as input to the actor working on its
sibling. In concurrent logic programming, this is known as a short-circuit, since it
amounts to the various solutions eventually being linked together like an electric
circuit. In this case, the program is fully parallel. The generic version is:

search(Acc,State,Sols)
:- isgoal(State,Flag), expand(Flag,Acc,State,Sols).

expand(true,Acc,State,Sols) :- Sols=[State|Acc].
expand(false,Acc,State,Sols)

:- successors(State, Succs), branch(Acc,Succs,Sols).

branch(Acc,[],Sols) :- Sols=Acc.
branch(Acc,[State|Siblings],Sols)

:- search(Acc,State,Sols1),
branch(Sols1,Siblings,Sols).

In Prolog, this technique is known as difference-lists [Clark and Tärnlund, 1977] (or
accumulators), with the convention being that the pair Acc and Sols is written
Sols–Acc, indicating that a conceptual way of viewing it is as the solutions returned
are those in Sols less those in Acc.

6.6 Layered Streams

So far, it has been assumed that goals are delivered only at leaves of the search tree.
If this is not the case, an alternative method – layered streams [Okumura and
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Matsumoto, 1987] can be used. Layered streams are used if the solutions to some
search problem consist of a sequence of actions. The head of the sequence is derived
from the current state independent of subsequent actions and the tail of the list being
the remaining actions. Then, the set of solutions can be returned in a tree form
matching the tree structure of the search space. Using the notation convention
introduced by Okumura and Matsumoto [1987], a set of solutions with a common
first action M is stored in the form M*[T1,…,Tn] where Ti is a tree in similar form
representing a set of possible tails to the list of actions. A layered stream representing
the set of actions from a given state takes the form of either a set of these sets of
solutions or two special atomic values. The atomic message begin indicates that the
state is itself a goal state and so a solution is found with the empty list of actions. The
message [] indicates a state which is not a solution and there are no possible actions
from it that will lead to a solution. For example, the layered stream

[1*[2*[3*begin,4*[]],5*[6*begin,7*[],8*begin]],9*begin]

is a representation of the set of solutions {[1,2,3],[1,5,6],[1,5,8],[9]}, which is more
intuitively pictured as the tree in Figure 6.6.1.

1 9

2 5

3 4 6 7 8

Fig. 6.6.1 A layered stream

The arcs are labeled with the actions they represent and the black circles represent
nodes that are not solutions and have no descendants.

The generic search program, which produces a layered stream representing the set of
possible solutions, is:

search(State,Sols)
:- isgoal(State,Flag), expand(Flag,State,Sols).

expand(true,State,Sols) :- Sols=begin.
expand(false,State,Sols)

:- successors(State, Succs), branch(Succs, Sols).

branch([], Sols) :- Sols=[].
branch([(State,Action)|Siblings], Sols)

:- search(State,Sols1),
branch(Siblings,Sols2),
join(Action,Sols1,Sols2,Sols).

join(Action,Sols1,Sols2,Sols) :- Sols=Action*[Sols1|Sols2].
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where it is assumed that states are returned paired with the action that generated them
from their parent in successors.

A slightly more complex form of join removes dead-end branches from the tree as
they are constructed:

join(Action,Sols1,Sols2,Sols) :- Sols1=/=[]
| Sols=Action*[Sols1|Sols2].

join(Action,[],Sols2,Sols) :- Sols=Sols2.
A version of join that returns a single solution indeterminately is easy to define:

join(Action,Sols1,_,Sols) :- Sols1=/=[] | Sols=[Action|Sols1].
join(Action,_,Sols2,Sols) :- Sols2=/=[] | Sols=[Action|Sols2].
join(Action,[],[],Sols) :- Sols=[].

Further variants of join may be considered in a similar way to the variants of
combine considered previously. Some of these will appear later in the chapter.
Layered streams may seem complex when combined in an undisciplined way with
other elements of search (for example in some of the programs in [Tick, 1991]).
However, when analyzed in this generic way they are a natural extension to the
techniques already introduced. The complexity comes about because in the interests
of efficiency elements of the search, which have been split up here into separate
actors, may in practice be interlinked in single multi-purpose actors. Our preferred
mode of programming would be to encourage the use of generic programming
patterns or clichés [Waters, 1985] in program development, but to use program
transformation methods, such as partial evaluation (Chapter 9) to produce more
efficient but less understandable programs.

6.7 Eliminating Redundant Search

A simple way of eliminating redundant speculative search is through the use of a
termination message. The idea is that search may only continue while a channel
remains unbound. When a solution is found, the channel is bound to some constant
found. This channel is checked before each expansion of the search tree takes place.
Of course, objections may be raised that this technique requires the use of an extra-
logical test for whether a message has arrived. For the moment, these objections will
be overridden. A generic search program using the termination message technique is
given below:

search(Term, State, Sols)
:- isgoal(State, Flag),

expand(Flag, Term, State, Sols).

expand(Flag, found, State, Sol) :- Sol=none.
expand(true, Term, State, Sol) :- unknown(Term) | Sol=State.
expand(false, Term, State, Sol) :-unknown(Term)

| successors(State, States),
branch(Term, States, Sol).
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branch(Term, [], Sol) :- Sol=none.
branch(Term, [State|Siblings], Sol)

:- search(Term, State, Sol1),
branch(Term, Siblings, Sol2),
choose(Sol1, Sol2, Sol).

The exact nature of the test for a message being unbound in a concurrent and
potentially distributed program is an issue for discussion. The constraint unknown is
used to indicate an inexpensive test that simply checks whether the channel is known
to be bound at the processor on which the test takes place. It may be that it has been
found elsewhere, but news of that binding has not yet reached the processor. The
distinction between this test and a var test which locks the channel and makes a full
check for lack of a binding throughout the system is noted in [Yardeni et al., 1990].
This reference also suggests a “test-and-set” operator, that is an atomic operation
which checks the whole system for whether a channel is unbound and if it is unbound
sets it to a value, otherwise it has no effect. The advantage of this operator is that it
can overcome the binding conflict problem and allow us to have a single shared
channel to return a solution.. In effect, this channel has the dual role of returning a
solution and acting as a termination message. This version is given below:

search(State, Sols)
:- isgoal(State, Flag),

expand(Flag, State, Sols)

expand(Flag, State, Sol) :- nonvar(Sol) | true.
expand(true, State, Sol) :- test_and_set(Sol,State).
expand(false, State, Sol) :- var(Term)

| successors(State, States),
branch(States, Sol).

branch([], Sol) :- true.
branch([State|Siblings], Sol)

:- search(State, Sol),
branch(Siblings, Sol).

The version using test_and_set enables us to dispense with the hierarchy of
choose actors that are necessary in the version of the program using unknown.
This is because without a test_and_set we cannot tell whether a channel we are
binding has been bound elsewhere. Even with var it cannot be guaranteed that in
between var(X) succeeding and the execution of X=value, X has not been bound
elsewhere. This problem does not occur with the termination message so long as = is
unification rather than assignment since then Term=found will succeed even if Term
has been bound elsewhere to found. If multiple writers to the termination message is
a problem, or to avoid the bottleneck of every process over a distributed system
needing access to a single global termination channel, we can use a version in which
each actor has its own termination channel. Then, choose has a multiple role – as
well as passing solutions upward in the tree, it passes termination signals downwards.
The following program does this:
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search(Term, State, Sols)
:- isgoal(State, Flag),

expand(Flag, Term, State, Sols).

expand(Flag, found, State, Sol) :- Sol=none.
expand(true, Term, State, Sol) :- unknown(Term) | Sol=State.
expand(false, Term, State, Sol) :- unknown(Term)

| successors(State, States),
branch(Term, States, Sol).

branch(Term, [], Sol) :- Sol=none.
branch(Term, [State|Siblings], Sol)

:- search(Term1, State, Sol1),
branch(Term2, Siblings, Sol2),
choose(Term, Term1, Term2, Sol1, Sol2, Sol).

The six argument version of choose, including termination channels is:
choose(found, Term1, Term2, _, _, Sol)

:- Term1=found, Term2=found, Sol=none.
choose(_, _, Term2, Sol1, _, Sol) :- Sol1=/=none

| Term2=found, Sol=Sol1.
choose(_, Term1, _, _, Sol2, Sol) :- Sol2=/=none

| Term1=found, Sol=Sol2
choose(_, _, _, none, none, Sol)

:- Sol=none.
The effect of executing this program, as shown in Figure 6.7.1, is to set up a binary
tree of choose actors in which each arc is represented by two channels. The arrows
show the direction of the flow of data in these channels.

Term Sol

Term1 Term2

Sol1 Sol2

Term1´ Term2´ Term1´´ Term2´´
Sol1´

Sol2´
Sol1´´

Sol2´´

Choose

Choose Choose

search search search search

Fig. 6.7.1 Duplex communication between choose actors
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A short-circuit all-solutions search program may also be used as the basis for a
speculative search program with a cutoff when a solution is found. The following
version of it program will accomplish this:

search(Acc,_,Sols) :- wait(Acc) | Sols=Acc.
search(Acc,State,Sols) :- unknown(Acc)

| isgoal(State,Flag), expand(Flag,Acc,State,Sols).

expand(true,Acc,State,Sols) :- Sols=[State|Acc].
expand(false,Acc,State,Sols)

:- successors(State, Succs), branch(Acc,Succs,Sols).

branch(Acc,[],Sols) :- Sols=Acc.
branch(Acc,[State|Siblings],Sols)

:- search(Acc,State,Sols1),
branch(Sols1,Siblings,Sols).

where wait(X) cannot fail, but if X is unbound suspends until it becomes bound. The
initial call to this program should be

:- search(Acc,State,Sols), complete(Sols,Acc),

where complete is defined by:

complete(Sols,Acc) :- wait(Sols) | Acc=[].
complete(Sols,Acc) :- Sols==Acc | Acc=[].

The result is that when a solution is found, any search which remains to be done is cut
off and the circuit is linked up to the right of the solution in the search tree. The
complete actor completes the circuit halting any remaining search to the solution’s
left. It is assumed the == test in the second behavior for complete will succeed if its
two arguments are the same unbound channel and suspend if they are two different
unbound channels. This will prevent deadlock in the case where there are no
solutions. It is possible for a solution to be found in one place and linked into the list
of solutions before news of the finding of a solution elsewhere is received. Unless
there are no solutions, the output of this search will be a short list containing at least
one but possibly more solutions.

6.8 A Direct GDC Solution Using Priorities

The problem of unrestricted parallelism has not yet been dealt with. At any point in
the execution of a search, any actor that is sufficiently bound to reduce could do so.
In practice, choose actors will remain suspended waiting for solutions or
termination channels, so it will be the search actors at the leaves of the tree that will
be reducing. Generally, some of the search actors are more likely to lead soon to a
solution state than others. In the absence of architectural limitations on the amount of
parallelism available, we would prefer that if a processor has a choice of search
actors which it can expand, it will pick the one most likely to lead to a solution. In
many problems there is a heuristic that indicates which one it is.
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Once a solution is found, the choose actors, which pass the solution upwards and
termination values downwards to the rest of the tree, need priority over the search
actors which are expanding the tree. Otherwise livelock occurs where expanding
search actors take over the resources that ought to be used by the choose actors, to
send messages that a solution has been found and no further expansion is necessary.

The preferred solution is to control the parallelism through the priority pragma of
GDC introduced in Chapter 4. The idea of introducing priorities into concurrent logic
languages was arrived at independently by one of the authors [Huntbach, 1988;
1991], influenced by Burton’s use of a similar priority pragma in functional
languages [Burton, 1985] and the ICOT group developing the parallel language KL1
[Ueda and Chikayama, 1990]. The priority pragma may be considered a practical
implementation of the precedence relationship between subproblems in a General
Problem Solving Algorithm [Rayward-Smith et al, 1988]: the precedence relationship
establishes a partial ordering among subproblems, which in practice may be modeled
by assigning them a numerical priority. The precedence gives an ordering of the
likelihood of a subproblem contributing to the overall solution.

The idea is that should two actors be located on a single processor with its own
memory and both actors have channels sufficiently bound so that they can reduce, the
one with the highest priority will always be reduced first. If N processors share a
memory store and there are more than N reducible actors in that store, then the N
highest priority actors will be reduced. It is assumed that an underlying load-
balancing mechanism will give a reasonable distribution of high priority actors across
processors. The alternative would be a global priority list shared out across the
processors, but this would be an expensive bottleneck on a non-shared memory
system. Otherwise the programmer need not be concerned with actor-mapping. This
means that a program employing priorities may be ported with ease between a variety
of architectures.

Load-balancing between processors in a parallel architecture may be compared to
such things as register allocation in a standard sequential system. In both cases,
although a program could be made more efficient by giving the programmer direct
control over allocations, it is best to free the programmer from such low-level
considerations. At least it would be preferable to confine them to a separate program
layer so that the abstract structure of the algorithm is not buried within code dealing
with the allocations.

The syntax for priorities writes actors as actor@priority(P) where actor is any
GDC actor and P is a real number, or a GDC channel that will be bound to a real (in
the latter case the actor will be suspended until P is bound). When actor is
sufficiently bound to reduce, actor@priority(P) will reduce in just the same way as
actor would, providing there are no other reducible actors with higher priorities
sharing the same processor. Any actor without a priority call is termed mandatory
(following Burton [1985]) and in effect has infinite priority. Note that our intention,
unlike the ICOT team, is that priorities should be attached only to current actor and
not to subsequent subactors. This gives the maximum flexibility – if it is desired that
the children of an actor should share that actor’s priority this can easily be arranged
by passing the priority down to them as a parameter.
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The priority call is an unobtrusive addition to a program that enables the programmer
to write the program as if the maximum parallelism is available and add annotations
at a later stage to cover the fact that in practice parallelism is limited. To add
priorities to the existing search programs, a simple change is needed to the behavior
that sets up a search actor in a branch. With an actor heuristic that takes as its first
argument a state in the search space and returns in its second argument a heuristic
value associated with that state, the following new clause for branch suffices:

branch(Term, [State|Siblings], Sol)
:- heuristic(State,H),

search(Term1, State, Sol1)@priority(H),
branch(Term2, Siblings, Sol2),
choose(Term, Term1, Term2, Sol1, Sol2, Sol).

Note that although the priority is attached only to the search actor, this will affect
the whole program since, as shown, the program reduces to a tree with search actors
at the leaves being the only reducible actors. The internal choose actors suspend.
Thus, every reducible actor will have a priority. Since choose actors do not have
priorities they are mandatory as required; they will always be executed before
search actors. This gives the desired property that passing on a termination signal
will always have priority over expanding the tree.

The use of priorities fits in best with the AND-parallel languages like GDC where
program execution may be viewed in terms of concurrent actors. Although it is
possible to introduce user-defined priorities into OR-parallel languages, it seems to be
more complex. Szeredi [1991], for example, introduces priorities into Aurora to solve
heuristic search problems similar to that considered here, but requires a further four
additional primitives.

Saletore [1990] has also considered the introduction of priorities into parallel logic
programs in order to control speculative computations. His priorities are inferred by
the system rather than given by the user and are thus less flexible than those given
here. However, Salatore’s detailed consideration of methods for implementing
priorities and load-balancing schemes, together with encouraging practical results,
offers further support for the priority construct.

6.9 Search Anomalies

On a single processor system, the search program with priorities will degenerate to a
situation where the implicit priority queue of search actors matches exactly the
explicit priority queue of states in the metaprogramming approach above. It is well
known that if the heuristic associated with any state is a lower bound on the cost of
all solutions reachable through that state (a heuristic with this property is termed
admissible), the first solution found by expanding the search tree in the heuristic
order will be optimal. However, this cannot be guaranteed on a multi-processor
system, even if the priority list is shared. Consider the situation where the subtree in
Figure 6.9.1 is part of the search tree, where double circled nodes indicate solution
nodes, the values in the nodes are the heuristics and no node anywhere else in the tree
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has a heuristic less than N+5. Here, by convention, nodes with the lowest heuristic
are expanded first (the GDC priority would be the inverse of the heuristic):

N+2

N+1

N

N+3

N+4

Fig. 6.9.1 Actors prioritized by heuristic valuations

On a single processor system, the node with heuristic N will be expanded first,
leading to the two nodes with heuristic N+1 and N+3 being at the head of the priority
queue. The node with heuristic N+1 will then be expanded leading to the three nodes
with heuristic N+2, N+3 and N+4 being at the head of the priority queue. The node
with heuristic N+2 will then be expanded and found to be a solution.

On a two-processor system, however, the node with heuristic N and some other node
(with, as said, heuristic N+5 or more) will both be expanded. This will lead to the
nodes with heuristics N+1 and N+3 being at the head of the priority queue. Both will
be expanded and the node with heuristic N+3 found to be a solution rather than the
better solution with heuristic N+2. There is more scope for this sort of anomaly if
there is a separate priority queue for each processor. Suppose there are three nodes
with heuristics N, N+1 and N+2 on a two-processor system. It may be the case that
the nodes with heuristics N and N+1 are on the same processor and so the nodes with
heuristics N and N+2 are expanded, so the strict order of priority is lost.

To see how a multiprocessor search can lead to arbitrarily large speedup or
slowdown, consider first the case where the children of a state with heuristic N are a
solution state with heuristic N+2 (Figure 6.9.2) and a non-solution state with
heuristic N+1. This non-solution child has an arbitrarily large number of non-solution
descendants all of heuristic N+1 with no other state having a heuristic less than N+3
(Figure 6.9.2).

On a single processor, the state with heuristic N will be expanded, putting the top
state with heuristic N+1 and the state with heuristic N+2 at the head of the priority
queue. The state with heuristic N+1 will then be expanded putting two more states
with heuristics N+1 at the head of the priority queue and so on for an arbitrary length
of time. Only when the N+1 heuristic states are exhausted is the N+2 heuristic state
tried and found to be a solution. On a two processor system the top N+1 and the N+2
heuristic state will be expanded and the N+2 heuristic state found to be a solution and
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returned, without any further search needed. Since the number of N+1 nodes that are
no longer considered is arbitrarily high, the speedup with two processors is arbitrarily
high.

N+1

N

N+2

N+1N+1

Fig. 6.9.2 Acceleration anomaly

Deceleration anomalies or slowdowns occur when a multiprocessing system causes a
node to be expanded that would not be considered in a single processor system, but
on expansion reveals promising-looking descendants which do not though have any
solutions in them. For example, suppose in the tree in Figure 6.9.3, the N+1 heuristic
states have an arbitrary number of descendants all with heuristic N+1 but with no
solutions among them. On a single processor they would never be reached since on
expansion of the N heuristic node, the N+2 and N+3 heuristic nodes would be
produced and the N+2 expanded first. This would reveal its successor N+2 heuristic
node, which again would be expanded before the N+3 node and found to be a
solution.

On a two processor system, however, after the expansion of the initial N heuristic
node, both its successors would be expanded, resulting in the top two N+1 heuristic
nodes being at the head of the priority queue, followed by the N+2 heuristic goal
state. Since there are an arbitrary number of N+1 heuristic descendants of the top
N+1 heuristic nodes, the two processor system would spend an arbitrarily long
amount of time searching them, before finding the N+2 heuristic solution.

As Lai and Sahni [1984] point out, although the conditions which produce these
anomalies look unusual, in practice it is quite common for nodes in a search tree
surrounding a solution to have heuristic values which are very close to each other.
Therefore, they are a factor that needs to be taken into account. Fortunately, the
conditions that lead to superlinear speedup are more common than those that lead to
slowdown are. As McBurney and Sleep [1987] show experimentally, it is not unusual
for state space search with N processors to result in a speedup of more than N. Lie
and Wah [1984] describe conditions on heuristics that assure that the detrimental
slowdowns that are possible with parallelism cannot occur and also conditions that
are necessary for superlinear speedup. The possibility of superlinear speedups led
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Kornfeld [1982] to suggest that the use of a parallel language and pseudo-parallel
execution could improve algorithm efficiency, even when actually executed on a
single processor. The improvement which Stockman [1979] notes in his SSS*
algorithm gives over the standard alpha-beta search of game trees is due to the
pseudo-parallel search of the game tree which SSS* uses in the place of alpha-beta
search’s strict depth-first left-to-right approach.

N

N+2

N+2N+3

N+1 N+1

Fig. 6.9.3 Deceleration anomaly

The more usual situation, however, is that search on a multiprocessor system will
yield some speedup but a speedup less than the number of processors. In addition to
dealing with the overhead of the parallelism, if some of the parallelism is speculative
the total amount of work done in a parallel search will be greater than that done with
the same problem on a single processor. This is due to parts of the tree being searched
that would not be considered in a single processor search. If there is no speculative
computation, for example in a search for all solutions, any failure of the speedup to
reach the number of processors will be due just to the overhead of parallelism, since
the total amount of work done on the problem itself will not change.

6.10 Branch-and-Bound Search

As shown above, on a multiprocessor system, even if an admissible heuristic is
available, we cannot guarantee that the first solution found is the lowest cost one. The
cost of the first solution is, however, an upper bound on the lowest cost solution. If
there is a way of determining a lower bound on the cost of any solution reached
through a particular state and if that lower bound is greater than or equal to the cost of
the best solution so far, the state need not be expanded. This is because it will not
give us a better solution. The point at which search of a subtree is abandoned because
its lower bound is greater than a known upper bound is known as a cut-off. This
method of searching with bounds is known as branch-and-bound search [Lawler and
Wood, 1966]. Often, a heuristic used for search is also a lower bound. That is so with
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the heuristic for the 8-puzzle described in Section 6.4, since, to move all cells into
position requires at minimum the number of squares each cell is out of position.

A branch-and-bound search program can be based on an all-solutions program,
returning a stream of solutions. Cutoffs will stop many of the solutions being reached
and joining the stream. A simple version of a branch-and-bound program has a
manager actor to which all solutions are sent and which keeps an account of the
lowest cost solution found so far. Since the cost of this solution is an upper bound, the
manager also receives requests from the search processes for the current upper bound.
The manager deals with sol type messages, which pass on new solutions and their
associated costs and request messages, which request the current upper bound and
return it in a reply channel. Replacing choose actors of the single-solution search
with stream merges, there is no need for any other termination mechanisms. There is
no need to use the extra-logical unknown.

The following program implements this:

search(State,Msgs)
:- Msgs=[request(UpBound)|Messg1],

lowerbound(State,LoBound),
cutoff(State,LoBound,UpBound,Msgs1).

cutoff(State,LoBound,UpBound,Msgs) :- LoBound>=UpBound
| Msgs=[].

cutoff(State,LoBound,UpBound,Msgs) :- LoBound<UpBound
| isgoal(State,Flag), expand(Flag,State,Msgs).

expand(true,State,Msgs)
:- cost(State,Cost), Msgs=[sol(State,Cost)].

expand(false,State,Msgs)
:- successors(State, Succs), branch(Succs, Msgs).

branch([], Msgs) :- Msgs=[].
branch([State|Siblings], Msgs)

:- heuristic(State,H),
search(State,Msgs1)@priority(H),
branch(Siblings,Msgs2),
merge(Msgs1, Msgs2, Msgs)

It is assumed that cost gives the cost associated with a solution state and
lowerbound gives the lower bound on solutions reachable through a given state.
Note that, since cutoff, the actor that either cuts off search or continues as
appropriate, contains an arithmetic test using LoBound in its guards, it will suspend
until the lower bound has been returned in the reply channel from the manager. The
manager behaviors are:
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manager([],ASolution,ACost,BestSol,LowestCost)
:- BestSol=Solution, LowestCost=Cost.

manager([request(UpBnd)|Msgs],ASol,ACost,BestSol,LowestCost)
:- UpBnd=ACost,
manager(Msgs,ASol,ACost,BestSol,LowestCost).

manager([sol(Sol1,Cost1)|Msgs],Sol2,Cost2,BestSol,LowCost)
:- Cost1<Cost2
| manager(Msgs,Sol1,Cost1,BestSol,LowestCost).

manager([sol(Sol1,Cost1)|Msgs],Sol2,Cost2,BestSol,LowCost)
:- Cost1>=Cost2
| manager(Msgs,Sol2,Cost2,BestSol,LowestCost).

The system is set up with initial actors:

:- search(InitState,Msgs),
manager(Msgs,Dummy,_,BestSol,LowestCost)

where Dummy is a value, which is known to be above any solution cost that might be
found.

Here normal stream merger can be used, but some efficiency gains can be made with
a more sophisticated merger. If two request messages are sent, they can be merged
into one by unifying their reply channels, thus reducing the number of messages that
need to be dealt with. If two solution messages are being sent, only the one with
lowest cost needs to be sent further. These considerations give rise to the following
version of merge:

merge([request(R1)|S1], [request(R2)|S2], S)
:- R1=R2, merge([request(R1)|S1], S2, S).

merge([request(R1),request(R2)|S1], S2, S)
:- R1=R2, merge([request(R1)|S1], S2, S).

merge(S1,[request(R1),request(R2)|S2],S)
:- R1=R2, merge([request(R1)|S1], S2, S).

merge([request(R)|S1], S2, S)
:- S=[request(R)|S3], merge(S1,S2,S3).

merge(S1, [request(R)|S2], S)
:- S=[request(R)|S3], merge(S1,S2,S3).

merge([sol(Sol1,Cost1)|S1], [sol(Sol2,Cost2)|S2], S)
:- Cost1<Cost2
| merge([sol(Sol1,Cost1)|S1],S2,S).

merge([sol(Sol1,Cost1),sol(Sol2,Cost2)|S1], S2, S)
:- Cost1<Cost2
| merge([sol(Sol1,Cost1)|S1],S2,S).

merge(S1, [sol(Sol1,Cost1),sol(Sol2,Cost2)|S2], S)
:- Cost1<Cost2
| merge([sol(Sol1,Cost1)|S1], S2, S).

merge([sol(Sol1,Cost1)|S1], [sol(Sol2,Cost2)|S2], S)
:- Cost1>=Cost2
| merge([sol(Sol2,Cost2)|S1], S2, S).
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merge([sol(Sol1,Cost1),sol(Sol2,Cost2)|S1], S2, S)
:- Cost1>=Cost2
| merge([sol(Sol2,Cost2)|S1],S2,S).

merge(S1, [sol(Sol1,Cost1),sol(Sol2,Cost2)|S2], S)
:- Cost1>=Cost2
| merge([sol(Sol2,Cost2)|S1],S2,S).

merge([sol(Sol,Cost)|S1], S2,S)
:- S=[sol(Sol,Cost)|S3], merge(S1,S2,S3).

merge(S1, [sol(Sol,Cost)|S2], S)
:- S=[sol(Sol,Cost)|S3], merge(S1,S2,S3).

A single manager holding the current best known solution is clearly a bottleneck,
since it has to respond to every search call checking for the current upperbound. The
above version of merge makes some improvements by merging multiple requests for
the upperbound into one. An alternative way of dealing with parallel branch-and-
bound search takes a similar approach to that used to avoid the bottleneck of a global
termination channel on the search for a single solution. In this case, each node in the
tree of merge actors created by the search stores its own upperbound limit. When a
lower cost solution is received from one branch, the limit is updated, the new solution
sent upwards in the tree and the new lower bound sent downwards on the other
branch. When a solution reaches a merge actor with a cost higher than the current
limit, it is not sent any further. It can be seen that when it is found, a lower bound will
gradually diffuse through the tree. The complete program for this branch-and-bound
search with distributed limits is:

search(InCosts,State,Sols)
:- lowerbound(State,LoBound),

cutoff(LoBound,InCosts,State,Sols).

cutoff(LoBound,[UpBound1,UpBound2|UpBounds],State,Sols)
:- LoBound<UpBound1
| cutoff(LoBound,[UpBound2|UpBounds],State,Sols).

cutoff(LoBound,[UpBound|UpBounds],State,Sols)
:- LoBound>=UpBound
| Sols=[].

cutoff(LoBound,[UpBound|UpBounds],State,Sols)
:- unknown(UpBounds), LoBound<UpBound
| isgoal(State,TV), expand(TV,[UpBound|UpBounds],State,Sols).

expand(true,Bounds,State,Sols)
:- cost(State,Cost), Sols=[(State,Cost)]

expand(false,Bounds,State,Sols)
:- successors(State,States), branch(Bounds,States,Sols).
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branch(Bounds,[],Sols) :- Sols=[].
branch([Bound|Bounds],[State|Siblings],Sols)

:- heuristic(State,H),
search([Bound|Bounds1],State,Sols1)@priority(H),
branch([Bound|Bounds2],Siblings,Sols2),
merge(Dummy,[Bound|Bounds],Bounds1,

Bounds2,Sols1,Sols2,Sols).

merge(Lim,[Bnd1,Bnd2|InBnds],Bnds1,Bnds2,Sols1,Sols2,Sols)
:- merge(Lim,[Bnd2|InBnds],Bnds1,Bnds2,Sols1,Sols2,Sols).

merge(Limit,[Bnd|InBnds],Bnds1,Bnds2,Sols1,Sols2,Sols)
:- unknown(InBnds), Bnd<Limit
| Bnds1=[Bnd|NewBnds1], Bnds2=[Bnd|NewBnds2],

merge(Bnd,InBnds,NewBnds1,NewBnds2,Sols1,Sols2,Sols).
merge(Limit,[Bnd|InBnds],Bnds1,Bnds2,Sols1,Sols2,Sols)

:– unknown(InBnds), Bnd>=Limit
| merge(Limit,InBnds,Bnds1,Bnds2,Sols1,Sols2,Sols).

merge(Limit,InBnds,Bnds1,Bnds2,[(Sol,Cost)|Sols1],Sols2,Sols)
:- unknown(InBnds), Cost<Limit
| Bnds2=[Cost|NewBnds2], Sols=[(Sol,Cost)|NewSols],

merge(Cost,InBnds,Bnds1,NewBnds2,Sols1,Sols2,NewSols).
merge(Limit,InBnds,Bnds1,Bnds2,Sols1,[(Sol,Cost)|Sols2],Sols)

:- unknown(InBnds), Cost<Limit
| Bnds1=[Cost|NewBnds1], Sols=[(Sol,Cost)|NewSols],

merge(Cost,InBnds,NewBnds1,Bnds2,Sols1,Sols2,NewSols).
merge(Limit,InBnds,Bnds1,Bnds2,[(Sol,Cost)|Sols1],Sols2,Sols)

:- Cost>=Limit
| merge(Limit,InBnds,Bnds1,Bnds2,Sols1,Sols2,Sols).

merge(Limit,InBnds,Bnds1,Bnds2,Sols1,[(Sol,Cost)|Sols2],Sols)
:- Cost>=Limit
| merge(Limit,InBnds,Bnds1,Bnds2,Sols1,Sols2,Sols).

merge(Limit,InBounds,Bounds1,Bounds2,[],Sols2,Sols)
:- Sols=Sol2, Bounds2=InBounds.

merge(Limit,InBounds,Bounds1,Bounds2,Sols1,[],Sols)
:- Sols=Sols1, Bounds1=InBounds.

To avoid repeated calculations of the cost associated with a state, costs are passed
around in pairs with solutions. The result of executing the program will be to create a
tree of merge actors, each of which will have one incoming stream of lower bounds,
two outgoing streams of lower bounds, two incoming streams of solution/cost pairs
and one outgoing stream of solution/cost pairs. All streams will be in decreasing cost
order. Note the use of unknown to check that the latest available bound from the
stream of incoming bounds is being used – when this is the case, unknown will
succeed when it takes as argument the channel storing the rest of the stream.
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6.11 Game Tree Search

Chapter 1 emphasized the role which games played in early Artificial Intelligence.
Programs that play games like chess are another form of state-space search in which
we have a tree of states with the root being the initial state. The root’s descendants
are generated by all possible actions from this state. The descendants of its
descendants are generated from them recursively. In a complete game tree, the leaves
represent board positions where no further actions may be made. Ignoring the
possibility of games with draw positions, the leaves ofthe game tree may be labeled
“win” or “lose”. If it is not a leaf, the root of the game tree is labeled “win” if at least
one of its descendant states is labeled “win”. By taking the actions that lead to that
leaf a winning position can be reached. The root is labeled “lose” if none of the
descendants is labeled “win”. Then, whatever actions are taken, it is not possible to
reach a winning position. The labeling of the subtrees of the root differs since they
represent positions in which it is the opponent trying to force a “lose” position. A
subtree is labeled “lose” if it has a subtree labeled “lose.” It is labeled “win” if it has
no subtree labeled “lose”. The next level down is labeled as the root level and so on
alternately down to the leaves. For this reason, game trees are a form of AND/OR
tree. If win/lose are treated as Booleans we have trees of logic terms where the odd
level branches are conjunctions and the even level disjunctions.

In the search of a complete game tree, it can be seen that when labeling nodes at an
odd level in the tree, as soon as search of one subtree returns a “win” it is unnecessary
to search the rest; a path that leads to a certain win has already found. Similarly, at
even levels as soon as one subtree returns “lose” it is unnecessary to search the rest. If
it is decided to search more than one branch of the tree in parallel we are engaging in
speculative computation since it is not known whether the search of the second and
subsequent branches will be necessary or not to return a solution. However, search of
them is initiated anyway to take advantage of parallelism.

This is a similar situation to that with standard search for a solution in a tree. Either
we take a cautious approach and lose all opportunity for parallelism, since all the
parallelism in the problem is speculative, or we ignore the fact that the parallelism is
speculative and run into the problem of overwhelming the system with speculative
computations.

The simple solution, with all speculative search possible, but cutting off no
speculative computation found unnecessary, is:

player(State, Val)
:- isleaf(State, L), playeraction(L, State, Val).

playeraction(true, State, Val) :- eval(State, Val).
playeraction(false, State, Val)

:- successors(State, Succs), or(Succs, Val).
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or([], Val) :- Val=lose.
or([State|Siblings], Val)

:- opponent(State, Val1),
or(Siblings, Val2),
either(Val1, Val2, Val).

either(win, _, Val) :- Val=win.
either(_, win, Val) :- Val=win.
either(lose, lose, Val) :- Val=lose.

opponent(State, Val)
:- leaf(State, L), opponentaction(L, State, Val).

opponentaction(true, State, Val) :- eval(State, Val).
opponentaction(false, State, Val)

:- successors(State, Succs), and(Succs, Val).

and([], Val) :- Val=win.
and([State|Siblings], Val)

:- player(State, Val1),
and(Siblings, Val2),
both(Val1, Val2, Val).

both(lose, _, Val) :- Val=lose.
both(_, lose, Val) :- Val=lose.
both(win, win, Val) :- Val=win.

An alternative formulation of game tree search labels nodes “win” or “lose”
depending on whether they represent a win or lose state for the player who is next to
move at the node itself, rather than always for the player at the root of the tree. In this
case a non-leaf node is labeled “win” if any of its successors are labeled “lose” and is
labeled “lose” if none of its successors are labeled “lose”. This leads to a simpler
algorithm and program, as it is no longer necessary to consider two different sorts of
nodes, though it is perhaps not so intuitive:

search(State, Val)
:- isleaf(State, L), expand(L, State, Val)

expand(true, State, Val) :- eval(State, Val)
expand(false, State, Val)

:- successors(State, Succs), branch(Succs, Val)

branch([], Val) :- Val=win.
branch([State|Siblings], Val)

:- game(State, Val1),
branch(Siblings, Val2),
combine(Val1, Val2, Val).
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combine(lose, _, Val) :- Val=win.
combine(_, lose, Val) :- Val=win.
combine(win, win, Val) :- Val=lose.

It can be seen that this program is a version of the generic search program (Section
6.5). Thus, termination channels may be used as previously to halt speculative search
that is found to be redundant.

6.12 Minimax and Alpha-Beta Search

In practice, apart from that subfield of games playing concerned with end-game
situations, game trees are usually too large for a complete exposition. Rather a state
which is not an end position in the game may be treated as a leaf and assigned a
heuristic value which represents an estimate of the likelihood of that state being a win
position in a full analysis. Naively, all states at a given depth in the tree will be taken
as leaves and assigned a numerical value. On similar principles to full game trees
above, a value for the root node and every non-leaf node at an even depth in the tree
is determined by selecting the maximum value of its descendants. The value for every
non-leaf node at odd depth is determined by selecting the minimum value of its
descendants. Hence the name minimax search. At the root, the action corresponding
to the subtree with highest value is given as the next move to make since this value is
the maximum value which the player can force the opponent to concede to.

For example, Figure 6.12.1 shows a complete tree, assuming nodes at depth 3 are
treated as leaves and evaluated according to the evaluation function. The values of the
internal nodes are worked out using the minimax procedure. The convention is that
square boxes represent maximizing nodes and round boxes minimizing nodes:
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Fig. 6.12.1 A minimax tree

As the leftmost branch of Figure 6.12.1 supplies the highest value at the root, the
action represented by the leftmost branch is the estimated the best action to make.
Estimating the position three plays ahead, this is the action that can guarantee leaving
the player in the best position whatever actions the opponent makes.
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It is not, however, necessary to search the whole tree. In Figure 6.12.1, consider the
case where a sequential depth-first left-to right evaluation of the tree takes place.
When the leftmost subtree of the root has been found to return a value of 28, it cannot
return a value greater than 28. This is because the root node is maximizing and its
descendants are minimizing. If any of the descendants of the descendants should
evaluate to less than 28, its parent is minimizing so its value cannot be picked as the
maximum. When the first sub-branch of the second branch returns a value of 23, it is
not necessary to search the rest of the branch since at most it will return a value of 23,
which will not exceed the 28 already established. With the third branch, its third sub-
branch’s return of 30 indicates a possibility of a better choice, but when the second
sub-branch of the third branch returns 22 the possibility that the actions represented
by the third branch is better is lost. The tree only needs to be searched to the extent
shown in Figure 6.12.2.
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Fig. 6.12.2 Alpha-beta pruned game tree

A formalization of these considerations of cutoffs in game-tree search, together with
a change to the formulation similar to that with complete game-trees, avoids having
to distinguish between maximizing and minimizing nodes and gives the well-known
alpha-beta algorithm [Knuth and Moore, 1975] for estimated game-tree search. This
may be described in pseudo-code:

function alphabeta(p: position; α,β: valuation):valuation= {
if leaf(p) then return(value(p)) else {

  for each successor position of p, p1 to pw do {
   α:=max(α,–alphabeta(pi,–β,–α));
   if α>β then return(α)
   };
  return(α)
  }
}

The evaluation is initialized with α and β set to –∞ and ∞ respectively. The value of
α may be increased by recursive calls but if it is increased to the value of β or
beyond, a cutoff position has been reached and no further evaluation is done as it is
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unnecessary. When α is increased, a reduced value for β is passed to recursive calls,
which again may cause cutoffs. The difference between α and β is described as the
alpha-beta window.

A GDC version of the alpha-beta algorithm is:

alphabeta(Position, Alpha, Beta)
:- isleaf(Position,Flag),

expand(Flag, Position, Alpha, Beta, Eval).

expand(true, Position, _, _, Eval)
:- evaluate(Position, Eval).

expand(false, Position, Alpha, Beta, Eval)
:- successors(Position, Succs),

branch(Alpha, Beta, Succs, Eval).

branch(Alpha, Beta, [], Eval) :- Eval=Alpha.
branch(Alpha, Beta, _, Eval) :- Alpha>=Beta | Eval=Alpha.
branch(Alpha, Beta, [Pos|Siblings], Eval)

:- NAlpha:=0-Alpha, NBeta:=0-Beta,
alphabeta(Pos, NBeta, NAlpha, PosEval),
max(PosEval, Alpha, Alpha1),
branch(Alpha1, Beta, Siblings, Eval).

Like the pseudo-code algorithm, this program will be sequential since the evaluation
of any branch is not started until the evaluation of its left sibling has completed and
returned an alpha value. In fact, it can be seen that the program follows the general
pattern of the previous linear search programs.

6.13 Parallel Game-Tree Search

The sequential nature of alpha-beta search comes from the desire to avoid speculative
computation. Since search of any one branch is likely to narrow the alpha-beta
window, it makes sense to wait until it has completed before searching the next
branch. This is particularly so because in most cases the branches in a game tree
search can be ordered so that there is a strong likelihood that search of the initial few
branches will reduce the alpha-beta window so as to make search of the rest
unnecessary [Marsland and Campbell, 1982]. It is thus particularly important that the
parallelism in parallel game tree search is ordered so that that most likely to
contribute to a solution is given priority.

The usual approach to parallel alpha-beta search is described as tree-splitting [Finkel
and Fishburn, 1983], which works in a similar way to the parallel tree search
considered previously, setting up actors to search every subtree in parallel. A
different approach to parallel alpha-beta search which will not be considered here
divides the alpha-beta window among processors and sets up multiple searches of the
complete tree with the different subwindows [Baudet, 1978]. In tree-splitting alpha-
beta search, when one subtree terminates and returns an alpha value, if this results in
an updating of alpha, the new alpha-beta window is sent to those branch searches
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which have not yet terminated. This means that search actors also have to take
account of the possibility that they may receive updated alpha-beta windows from
their parents. If so, they have to be passed down to their children and search is halted
if they cause alpha to exceed beta. Huntbach and Burton [1988] develop the tree-
splitting algorithm of Fishburn and Finkel [1983] by moving away from an approach
that depends on a particular tree structured architecture towards a more abstract
virtual tree [Burton and Huntbach, 1984] in which a tree of potentially parallel actors
matching the search tree is constructed. It is left to the underlying system to map it
onto a physical architecture. The algorithm is described in a pseudo-code style using
asynchronous remote procedure calls:

process alphabeta(p:position; α,β:valuation):valuation = {
asynchronous procedure report(α1:valuation)= {

if α1>α then {
α:=α1;
for all remaining children do child.update(–β,–α);
if α>β then terminate

}
}

asynchronous procedure update(α1,β1:valuation)= {
α:=max(α,α1);
β:=min(β,β1);
for all remaining children do child.update(–β,–α);
if α>β then terminate

}

for each successor position of p, p1 to pw do
setup new process alphabeta(pi,–β,–α);

wait until no remaining children;
parent.report(–α);
terminate

}

In this program, report is the procedure that sends new alpha values upwards only
when all children have terminated. The procedure update sends new alpha and beta
values downwards and is executed whenever new alpha or alpha and beta values are
received. The following gives a direct translation of this algorithm into GDC:

alphabeta(Pos,_,Alpha,Beta,Eval) :- Alpha>=Beta
| Eval=Alpha.

alphabeta(Pos,[(Alpha1,Beta1)|Upds],Alpha,Beta,Eval)
:- max(Alpha,Alpha1,Alpha2),

min(Beta,Beta1,Beta2),
alphabeta(Pos,Upds,Alpha2,Beta2,Eval).

alphabeta(Pos,Upds,Alpha,Beta,Eval)
:- unknown(Upds), Alpha<Beta
| isleaf(Position,Flag),
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expand(Flag,Position,Upds,Alpha,Beta,Eval).

expand(true,Position,_,_,_,Eval)
:- evaluate(Position,Eval).

expand(false,Position,Upds1,Alpha,Beta,Eval)
:- successors(Position,Succs),

branch(Upds1,Alpha,Beta,Succs,Reports),
manager(Upds,Alpha,Beta,Reports,Upds1,Eval).

branch(Upds,Alpha,Beta,[],Reports)
:- Reports=[].

branch(Upds,Alpha,Beta,[Pos|Siblings],Reports)
:- heuristic(Pos,H),

alphabeta(Pos,Upds,Alpha,Beta,Report)@priority(H),
branch(Upds,Alpha,Beta,Siblings,Reports1),
insert(Report,Reports1,Reports).

insert(Alpha,Alphas,Alphas1) :- wait(Alpha)
| Alphas1=[Alpha|Alphas].

insert(Alpha,[Alpha1|Alphas],Alphas1)
:- Alphas1=[Alpha1|Alphas2],

insert(Alpha,Alphas,Alphas2).
insert(Alpha,[],Alphas) :- Alphas=[Alpha].

manager(InUpds,Alpha,Beta,[Alpha1|Reports],OutUpds,Eval)
:- Alpha1>Alpha
| NAlpha:=0-Alpha1,

NBeta:=0-Beta,
OutUpds = [(NBeta,NAlpha)|OutUpds1],
manager(InUpds,Alpha1,Beta,Reports,OutUpds1,Eval).

manager(InUpds,Alpha,Beta,[Alpha1|Reports],OutUpds,Eval)
:- Alpha1<=Alpha
| reports(InUpds,Alpha,Beta,Reports,OutUpds,Eval).

manager([(Alpha1,Beta1)|InUpds],Alpha,Beta,Reports,OutUpds,Eval)
:- max(Alpha,Alpha1,Alpha2),

min(Beta,Beta1,Beta2),
NBeta:=0-Beta2,
NAlpha:=0-Alpha2,
OutUpds = [(NBeta,NAlpha)|OutUpds1],
manager(InUpds,Alpha2,Beta2,Reports,OutUpds1,Eval).

manager(InUpds,Alpha,Beta,[],OutUpds,Eval) :- Eval=Alpha
| OutUpds=[]

Note again the use of unknown and wait to ensure the latest alpha and beta values
are used. Some improvements can be made at the cost of a rather more complex
program (but one, which is not such a direct translation of the concurrent algorithm).
For example, checks on update values could ensure that update messages are not
forwarded when they do not change the alpha-beta window.
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The actor structure is complicated by the use of a single one-to-many stream used to
pass updates down the tree from the manager actor and a merger of results using
insert to insert individual reports into the stream of reports passed upwards into the
manager. The situation after the expansion of an individual alphabeta actor and
before the expansion of any of its descendants is shown in Figure 6.13.1.

manager

insert

insert

insert

alphabeta

alphabeta

alphabeta

OutUpdates

InUpdatesEval

Reports

Alpha

Alpha´

Alphas´

Alphas

Fig. 6.13.1 The alpha-beta actor structure

If the heuristic used is the depth in the tree, the search will revert to standard alpha-
beta search on a single processor. As suggested in [Huntbach and Burton, 1988],
ordering of the tree as in [Marsland and Campbell, 1982] can be obtained if the
priority is a real number, composed of the sum of an integer representing the depth
and a number between 0 and 1 representing the ordering evaluation of the position.
Alternatively, if the integer part of the priority is a heuristic evaluation and the
mantissa based on the depth to distinguish between positions of the same heuristic at
differing depths, a parallel version of the SSS* algorithm [Stockman, 1979] is
obtained. In fact, Kumar and Kanal [1983] give a general formulation which indicates
that both alpha-beta search and SSS* can be fitted into the branch-and-bound model.
Wilson [1987] also notes that in a concurrent logic program alpha-beta search and
SSS* are simply variants of a common game-tree search program which depend on
scheduling, though his program does not make use of priorities. Instead it relies on an
explicit oracle actor as part of the program which interacts with the search.
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6.14 Parallel Search and Cooperative Distributed Problem Solving

Lesser [1990] considers distributed state space search, as considered in this chapter,
to be the model on which more complex schemes of co-operative problem-solving
may be based. Many of the problems and tradeoffs that are encountered in distributed
search are simple forms of things that recur throughout attempts to distribute problem
solving across a network of agents. For example, the decision over when to pass
bounds in branch-and-bound search that may cause cutoffs generalizes to the problem
of trading off communication of information on the global problem between agents,
with its inevitable overhead, and allowing agents to pursue their own subtask
untrammeled by communication from elsewhere. Such communications may show
the subtask to be redundant, or give information that could help solve it, but they may
be merely unnecessary interference. The distribution of tasks to agents in a multi-
agent system, involving the recognition of potential interactions and the possibility of
interference both beneficial and disadvantageous (as with the search anomalies
discussed in Section 6.9) is met in a simple form in distributed search.

Lesser was involved in a large-scale project called the Distributed Vehicle
Monitoring Testbed (DVMT) which served as an exemplar for distributed problem
solving leading towards multi-agent systems [Lesser and Corkhill, 1983]. The basis
of this system was that sensors distributed over an environment collected acoustic
data at discrete sensed times. Sensors were attached to local processors that were
linked into a global network. The global problem was to interpret the data as vehicle
tracks.

In our distributed search, distribution of subtasks occurs in order to obtain speedup by
dividing the work. There is some of this in the DVMT as well: actors situated in part
of the environment where there is a lot of data picked up may pass some of their
interpretation work to processors situated in quiet areas which would otherwise be
idle. However, in this case the distribution also maps a physical distribution in the
data collection. The partial interpretation of raw sensory data at local level into
patterns, which may be more concisely represented, avoids the communications costs
associated with one central processor. One processor may advise another of those
parts of its data on which it would be advisable to concentrate work when the first has
discovered a vehicle track that leads into the sensing area of the second. This is
similar to the way in which in parallel alpha-beta search the passing of alpha-beta
bounds from the search of one subtree advises another search agent of those parts of
its subtree on which it would be most beneficial to concentrate search. In the DVMT
the sharing of partial results and the putting together of local plans into a global
interpretation of the data is built into a framework called Partial Global Planning
[Durfee and Lesser, 1991]. A partial global plan (PGP) is the knowledge of the global
situation a node has locally, based on its partial information and information received
from other nodes, plus a proposed plan of action. As problem solving proceeds, nodes
exchange PGPs gradually building up a more coherent global picture. Experiments
with this framework show there is a fine balance in the trade-off of communication
overhead against focussing on more relevant processing.
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Chapter 5

Actors and Agents

Even while it changes, it stands still

Heraclitus

Hewitt and Agha [1988], in a Fifth Generation conference, asked if Guarded Definite
Clause languages were logical. That they are sound but not complete should be clear
from previous chapters. Hewitt made a similar previous reappraisal of Planner. The
similarity of Planner with Smalltalk [Hewitt 1973, 1974] led Kornfield and Hewitt to
develop a pattern-directed invocation language, Actors, to build multi-agent systems.
Programming in the Actor formalism requires first deciding the messages each actor
can receive and then what each actor should do when it receives such a message. The
idea that single assignment variables can be considered as message channels was
raised in the previous chapter. The correspondence of GDC and Actors is explored in
this chapter. The superficial difference between Actors and GDC is one of ontology.
Actors names behaviors, message queues and local variables while GDC names only
behaviors and channels. The essential difference between the two languages is that
messages are defined inductively in GDC and message queues are implicit in Actors.

Like GDC, the process structure of Actors is small and therefore scalable. In
concurrent object-oriented programming, the uniformity of communication and
encapsulation, enable combination and co-operation of various levels and grains of
agents. This helps in constructing multi-grain intelligent architectures such as an
architecture for brain simulation [Weitzenfeld and Arbib, 1991]. In a similar way,
GDC programs can model fine entities such as neurons [Kozato and Ringwood,
1992]. This is illustrated in this chapter. The elegance with which process based
languages can be used to build neural networks indicates both the advantages of
implementing neural nets in a concurrent programming language and the innate
potential for massive parallelism with such languages. This Chapter also explores
new directions for both connectionism and symbolic AI research with a view to
fusion. For those readers who have managed to avoid connectionist propaganda until
now, the chapter introduces neural networks. In Section 5.8, an example indicates
how a self-replicating network of generic neurons can be produced. The neuron type
is specialized in Section 5.9 where its response behavior is programmed. Section 5.10
describes how such a neural network can be taught a simple recognition task, parity
determination. Parity recognition is an example celebre that presents a hard learning
exercise for most neural networks [Minsky and Papert, 1969].

Conway’s Life game provides a rich source of insight into how simple rules lead to
complex "social" behavior. Until the development of GDC languages, Logic
programmers were somewhat disadvantaged in this game. The chapter illustrates
how, with such Logic Languages, Logic programmers can readily join in. In
particular, the chapter reports a new asynchronous implementation of the Life game
on distributed workstations. This chapter is envisaged as the first step in the
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investigation of the use of GDC languages for building self-replicating multi-agent
systems.

5.1 The Actor Model

Newell [1962] pointed out that with conventional AI, a single agent appears to be
wandering over a goal net much as an explorer wanders over the globe. The agent has
a single context that it takes with it wherever it goes. This single agent view focuses
attention on the internal process of search with a single locus of control and attention.
This leads to preoccupation with control structures such as goal stacks and queues for
making decisions and changing contexts. Rather than a sequence of choices made by
a decision maker on a web of choice points, Hewitt [1977] envisages control as a
pattern of messages among a collection of computational agents he called Actors.

According to Hewitt [1985], incomplete knowledge is typical of AI and as such
requires an approach that allows continuous acquisition, refinement and toleration of
inconsistency. Hewitt claims open systems uncover important limitations in current
approaches to AI. Such systems require an approach more like organizational
behavior embodied in general systems theory [Skyttner, 1996]. Minsky [1986] has
claimed that intelligence in humans is a result of the interaction of a very large and
complex assembly of loosely connected subunits operating much like a society but
within a single individual. More generally, Hewitt argues that the agents in an
organization are open in the sense that they are embedded in an environment with
which they interact asynchronously. Open systems are not totally in control of their
fate. They consist of agents, conceptually parallel threads, which communicate with
each other and co-operatively or competitively respond to events that occur
indeterministicly in real-time.

Refinement of these ideas produced the Actor language [Agha, 1986] that attempted
to address the needs of distributed AI. The example of a stack is used to introduce
Actors in [Agha, 1986] using the Simple Actor Syntax:

def node(Item, Link)
[case operation of

push: (NewItem)
pop: (Customer)

end case ]
if operation = push then

let L = new node(Item, Link)
become node(NewItem, L)

fi
if operation = pop then

send Item to Customer
become forward(Link)

fi
end def
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The case statement clearly corresponds to GDC guards. Besides the conditional,
actors are defined inductively with four primitive actions: send; become; create
and forward. The arrival order of messages is nondeterministic but the underlying
message passing system is assumed to guarantee eventual delivery. To send a
message, the identity (mail address) of the recipient needs to be specified. The
become directive specifies the subsequent behavior of the actor. The send action
causes a message to be put in the recipient’s mailbox (message queue). The create
primitive (let and new) is to Actors what procedural abstraction is to sequential
programming. Newly created actors are autonomous and have unique mail addresses
specified in the create command.

The forward primitive actor passes on received messages to the mailbox named in
its argument. It is left to a garbage collector to detect and finesse forwarders. Both
channels, such as Item and message queues, such as Link, are named in the language.
The forwarder can be understood in GDC as shorting two streams as in merge. To
better understand the Actor language, a GDC program for the stack example
corresponding closely to the Actor program is given:

//node(Item, Task ,Link)
node(Item, push(NewItem, Task),Link) :- true

 | node(Item, L, Link), node(NewItem, Task,L)
node(Item,pop(Customer,Task),Link) :- true

| send(Task, Link) send(Item, Customer)

where send(Message, Channel) is used as a synonym for Channel=Message.

The first clause can be represented pictorially as in Figure 5.1.1 and the second clause
as in Figure 5.1.2. The essential difference between this and the previous program is
that Actors names message queues and channels, while GDC names only channels. In
Actors, variables are local variables and only message queues are shared. The
behavioral identity of an actor is ephemeral, as are GDC goals and lasts only one
reduction. Actor destruction is thus implicit.

Item

node

node node

Link
push

L

NewTaskNewItem

Fig. 5.1.1 First node clause
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Item

send send

node

Link
pop

Customer NewTask

Fig. 5.1.2 Second node clause

A scenario illustrating how the stack grows and collapses is the following.

:- node(empty, Task, nil), send(push(m1,Task1),Task),
send(push(m2,Task2),Task1), send(pop(Top,Task3),Task2).

:- node(empty,push(m1,Task1),nil), send(push(m2,Task2),Task1),
send(pop(Top,Task3),Task2).

:- node(empty,push(m1,push(m2,Task2)),nil),
send(pop(Top,Task3),Task2).

:- node(empty, push(m1,push(m2,pop(Top,Task3))),nil).
:- node(m1,push(m2,pop(Top, pop(Top,Task3))),L1),

node(nil,L1,nil).
:- node(m2,pop(Top,Task3),L2), node(m1,L2,L1),

node(empty,L1,nil).
:- node(m1,L2,L1), node(empty,L1,nil), send(m2,Top),

send(Task3,L2).
:- node(m1,Task3,L1), node(empty,L1,nil), send(m2,Top).
.
.
.

Before the pop operation the initial node(empty,Task,nil) has evolved into three
nodes as in Figure 5.1.3.

node

m1m2
empty

nil

Fig. 5.1.3 Node evolution



Actors and Agents 143

Here the identity of the stack is inherited from the initial node(empty,Task,nil).
That is, agent identity is emergent, in the sense of general systems theory and not
exhibited by a single node.

In the conditional semantics of GDC (described in Chapter 4):

a1, a2,...an ← R ← B ← I

lends itself to this idea of agent identity. If an actor ai in the initial network reduces to
a set of actors:

← b1, b2,... bm
the parent relation conveys a connotation of identity.

In the Actor interpretation of GDC, actors are defined inductively using a single
primitive agent send. The action is one of substitution of an actor by a network of
actors specified in the body of a clause. As actors in GDC are ephemeral, there is no
need for fowarders. This is summarized in the following table:

Table 5.1.4 Actor interpretation

behavior named set of condition action pairs (guarded clauses)
condition (guard) node(Item, Task, Link)

if receive(push(NewItem,NextTask),Task)
action – substitution
by network of agents

become node(NewItem, NextTask, L)
| node(Item,L,Link)

Yet again, the syntax of GDC has been changed to illustrate the actor interpretation.
The notation | for the concurrent composition of actors is borrowed from CCS
[Milner, 1980].

One problem with Actors is the combinatorial explosion in their number of actors.
Constructing message queues using data structures gives more flexibility and avoids
some of the explosion:

//node(Task, Stack)
node(Task, Stack)

if receive(push(NewItem, Task),Task)
become send(stack(NewItem, Stack),St1) | node(Task,St1).

node(Task, stack(Item, Stack))
if receive(pop(Customer, Task), Task),Item)
become send(Item, Customer) | node(Task, Stack)

In this revised implementation, a stack is formed by a message queue and node
becomes a server of the message queue. In the first behavior for node, the node
sends itself a message. This can be finessed:

node(Task,Stack) if receive(push(NewItem, Task),Item)
 become node(Task, stack(Item, Stack)).

node(pop(Customer, Task),stack(Top, Stack))
if receive(pop(Customer, Task), Task),Item)
become send(Item, Customer) | node(Task, Top)



144 Chapter 5

Figure 5.1.5 illustrates the revised first behavior.

node

node

stack

push

NewItem

Stack

Task

Fig. 5.1.5 Revised node behavior

The diagram for the second behavior is similar. This solution is not possible in Actors
because, essentially, it requires two message queues.

5.2 Haggling Protocols

Interaction is a basic concept in multi-agent systems.  Several agents can combine
their efforts by means of interaction. In an interaction, one agent takes an action or
decision that is influenced by the presence or knowledge of other agents. Each
interaction can cause revisions in an agent’s model of other agents. The example
below (illustrated in Figure 5.2.1) is a GDC program for the Winograd and Flores
haggling protocol [Winograd and Flores, 1986]:

B:accep
t

S:reject

B:reject

S:accep
t

S:counter
B:counter

Fig. 5.2.1 Winograd Flores labeled digraph

The buyer and seller start concurrently with a message for the buyer, the seller’s
asking price, already waiting:

become seller(100,Haggle,50) | buyer(30,counter(100,Haggle),60).
If the buyer receives an offer less than its upper limit, a message agreeing to the price
is sent:
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//buyer(CurrentOffer, NewOffer, UpperLimit)
buyer(Offer, NewOffer, UpperLimit)

if receive(counter(Ask, Haggle),NewOffer) & Ask<UpperLimit
become send(accept(Ask),Haggle).

If the buyer receives an offer greater and the difference between its previous offer and
the new asking price is less than its upper limit, it proposes a counter offer:

buyer(Offer, NewOffer, UpperLimit)
if receive(counter(Ask, Haggle),NewOffer) & Ask>UpperLimit

& NewOffer:=(Ask+Offer)/2 & NewOffer<UpperLimit
become send(counter(NewOffer, NewHaggle),Haggle)

| buyer(NewOffer, NewHaggle, UpperLimit).
If splitting the difference is greater than the buyer is prepared to pay it rejects the
offer:

buyer(Offer, NewOffer, UpperLimit)
if receive(counter(Ask, Haggle),NewOffer) & Ask>UpperLimit

& NewOffer:=(Ask+Offer)/2 & NewOffer>UpperLimit
become send(reject(Ask),Haggle).

The code for the seller is similar:

//seller(CurrentAskingPrice, Offers, LowerLimit)
seller(Ask,Offers, LowerLimit)

if receive(counter(Offer, Haggle),Offers) & Offer>LowerLimit
become send(agreed(Offer),Haggle).

seller(Ask, Offers, LowerLimit)
if receive(counter(Offer, Haggle),Offers) & Offer<LowerLimit

& NewAsk:=(Ask+Offer)/2 & NewAsk>LowerLimit
become send(counter(NewAsk, NewHaggle),Haggle)
| seller(NewAsk, NewHaggle, LowerLimit).

seller(Ask, Offers, LowerLimit)
if receive(counter(Offer, Haggle),Offers)

& Offer<LowerLimit & NewAsk:=(Ask+Offer)/2
& NewAsk<LowerLimit

become send(reject(Offer),Haggle).
The comparison of the Winograd Flores network and finite-state-machine diagram is
readily apparent. A comparison of GDC and the specification of finite state machines,
decision tables was made in Chapter 4.

The given initial object network results in the following scenario:

become seller(100,Haggle,75) | buyer(40,counter(100,Haggle),80).
become seller(100,Haggle,50) | send(counter(0,Haggle1),Haggle)

| buyer(70,Haggle1,80).
become seller(100,counter(70,Haggle1),75) | buyer(70,Haggle1,80).
become seller(85,Haggle2,75) | send(counter(85,Haggle2),Haggle1)

| buyer(70,Haggle1,80).
become seller(85,Haggle2,75) | buyer(70,counter(85,Haggle2),80).
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become seller(85,Haggle2,75) | send(counter(77.5,Haggle3),Haggle2)
| buyer(77.5,Haggle3,80).

become seller(85,counter(77.5,Haggle3),75)
| buyer(77.5,Haggle3,80).

become send(agreed(77.5),Haggle3) | buyer(77.5,Haggle3,80).
become buyer(77.5,agreed(77.5),80).

5.3 Consensus Protocols

There are three equivalent agreement problems that illustrate the potential for fault
tolerance of distributed systems: the Byzantine agreement, the consensus problem
and the interactive consistency problem [Singhal and Shivaratri, 1994]. They are
equivalent in the sense that a solution to any one can be used to solve the others. The
Byzantine Generals problem [Dolev, 1982] is so called because it resembles a team of
army generals trying to agree an attack plan. The generals are located on different
hilltops around the battlefield and communicate by sending messages (by
semaphore). Some of the generals are traitors (faulty processors) who by sending
conflicting messages, deliberately try to prevent the loyal generals agreeing.

Lamport et al.’s [1982] Oral Message algorithm is one solution to the problem. The
following illustrates the situation of four generals, one of which is a traitor:

become source(1,[A,B,C]) | general(A) | traitor(B) | general(C).
An arbitrarily chosen source general broadcasts its plan to all other generals:

//source(Value, List_of_Messages)
source(N,[G1,G2,G3]) if true

become send(plan(N,[{G12,G21},{G13,G31}]),G1)
| send(plan(N,[{G21,G12},{G23,G32}]),G2)
| send(plan(N,[{G31,G13},{G32,G13}]),G3).

In doing so, the source sets up the mutual channels.

In the Lamport–Shostak–Pease [1982] solution, the generals send the plan they
received from the source to the other generals and choose the majority plan:

//general(Plans)
general(Plans) if receive(plan(N,[{TA,FA},{TB,FB}]),Plans)

become send(N,TA) | send(N,TB)
| majorityGeneral([N,FA,FB]).

//traitor(Plans)
traitor(Plans) if receive(plan(N,[{TA,FA},{TB,FB}]),Plans)

become send(N,TA) | send(0,TB) | majorityTraitor([N,FA,FB])
In this scenario, the faithful generals agree on the Plan 1:

become source(1,[A,B,C]) | general(A) | traitor(B) | general(C)
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become send(plan(1,[{AB,BA},{AC,CA}]),A)
| send(plan(1,[{BA,AB},{BC,CB}]),B)
| send(plan(1,[{CA,AC},{CB,BC}]),C)
| general(A) | traitor(B) | general(C).

become general(plan(1,[{AB,BA},{AC,CA}]))
| traitor(plan(1,[{BA,AB},{BC,CB}]))
| general(plan(1,[{CA,AC},{CB,BC}]),C)).

1

1

1

0

source

g g

tra
1

1

1

1

Fig. 5.3.1 Four Byzantine generals

The three sends have been done simultaneously. Continuing:

become general(plan(1,[{AB,BA},{AC,CA}]))
| traitor(plan(1,[{BA,AB},{BC,CB}]))
| general(plan(1,[{CA,AC},{CB,BC}]),C)).

become send(1,AB) | send(1,AC) | majorityGeneral([1,BA,CA])
| traitor(plan(1,[{BA,AB}|{BC,CB}]))
| general(plan(1,[{CA,AC}|{CB,BC}]),C)).

become majorityGeneral([1,BA,CA])
| traitor(plan(1,[{BA,1},{BC,CB}]))
| general(plan(1,[{CA,1},{CB,BC}]),C)).

become majorityGeneral([1,BA,CA])
| traitor(plan(1,[{BA,1},{BC,CB}]))
| general(plan(1,[{CA,1},{CB,BC}]),C)).
send(1,CA) | send(1,CB) | majorityGeneral([1,1,BC]).

become majorityGeneral([1,BA,1])
| traitor(plan(1,[{BA,1},{BC,1}]))
| majorityGeneral([1,1,BC]).

become majorityGeneral(1|BA|1)
| send(1,BA) | send(0,BC) | majorityTraitor([N,FA,FB])
| majorityGeneral([1,1,BC]).

become majorityGeneral([1,1,1])
| majorityTraitor([1,1,0]),
| majorityGeneral([1,1,0]).
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5.4 Market Forces

In the much vaunted Contract Net Protocol [Smith, 1980], a customer requests
Contractors to tender for a specified job.

//contractNet(SpecifiedJob, SetOfContractors, Chosen)
contractNet(Job, Contractors, Chosen) if true

become tender(Job, Contractors,[],Time,Tenders)
| time(5,Time) | select(Tenders, Chosen).

The actor time/2 is a primitive that immediately it is spawned initializes a real-time
clock. After the designated five periods has elapsed, it sends a message timeUp on
the channel Time. (Man [1992] describes concurrent analysis techniques that, he
claims, make GDC programming suitable for hard realtime systems.) The actor
select/2, which is not specified, choses the contractor on the basis of the tenders
received (usually the lowest cost.)

After the timeout has expired, tender/4 sends the received bids on Tenders to the
selector actor. In the meantime it distributes the Job description to the set of
Contractors with a unique reply channel (as in the client actor in Chapter 4):

//tender(SpecifJob, Contractors, ReplyAcc, Time, TenderReplies)
tender(Job, Contractors, Accum, Time, Tenders)

if receive(timeUp,Time)
become send(Accum, Tenders).

tender(Job, Contractors, Accum, Time, Tenders)
if receive([Contractor|Cs],Contractors)
become send(offer(Job, Reply),Contractor)

| tender(Job, Cs, [Reply|Accum], Time, Tenders).

5.5 Poker Faced

A poker game can be seen as a combination of a contract net and the haggling
protocol. The auctioneer raises the stakes until there is only one punter left in the
game:

//auction(CurrentOffer, SetOfPunters)
auction(CurrentOffer, Punters) if Offer:=CurrentOffer+1

become request(Offer, Punters, Accum, Replies)
| time(5,Time) | wait(Time, Offer, Replies)

Punters are connected to the auction via fair merges. The punter is simplified to
remain bidding while Offer is less than some punter chosen limit:

//punter(Requests, UpperLimit)
punter(Requests, UpLimit)

if receive([bid(Offer, Reply)|Round],Requests)
& Offer=<UpLimit

become send(in(More),Reply) | punter(More, UpLimit).
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punter(Requests, UpLimit)
if receive([bid(Offer, Reply)|Round],Requests)

& Offer>UpLimit
become send(out,Reply).

//request(Offer, SetPunters, Accumulator, SetBidReplyPairs)
request(offer, SetPunters, Accum, Replies)

if receive([in(Punter)|Ps],SetPunters)
become send(bid(offer,Reply),Punter)

| request(offer, Ps,[Reply|Accum],Replies).
request(offer, SetPunters, Accum,Replies)

if receive([out|Ps],SetPunters)
become request(offer,Ps,[Reply|Accum],Replies).

request(Job, SetPunters, Accum,Replies)
if receive([],SetPunters)
become send(AccumReplies).

request(offer, SetPunters, Accum, Replies)
if receive([X|Ps],SetPunters) & unknown(X)
become request(offer, Ps,[Reply|Accum],Replies).

wait(timeUp, offer, Replies) if true
become auction(Bid, NewPunters).

5.6 Virtual Neural Networks

Weitzenfeld and Arbib [1991] propose building a brain from a host of actors in much
the same way a biological brain is made up of neurons. That organic brains and
computers have approximately the same number of processing elements, 1011, might
initially suggest that the perceptive power advantage of organic brains over
computers must be due to the speed of its electrochemical processing elements,
neurons. This is not so. Neurons are significantly slower at firing than logic gates are
at changing state. Neurons fire in milliseconds whereas off-the-shelf solid-state
technology can switch state in nanoseconds. If raw processing power is calculated as
the product of the number of processing elements and the response rate, the computer
has an apparent power advantage of ten thousand. Nevertheless, this advantage is not
realized because only small fractions of logic gates change state simultaneously. It is
one thing to have the capacity for parallel processing, it is another to be able to
exploit it efficiently. It would seem to be the way in which potential parallelism is
exploited in organic brains that gives them greater power than conventional
computers.

Conscious thought, examined on time-scales of seconds or minutes has sequential
characteristics. Current psychological thinking on perception is that humans relate
fragmentary stimuli to knowledge familiar from various experiences and
unconsciously test and reiterate perceptions at different levels of abstraction. In other
words, what beings believe they perceive, is, in fact, only a mental reconstruction of
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fragments of sensory data. This is reminiscent of the philosophy of Husserl and
Heidegger. This suggests that symbolic AI is not made redundant by artificial neural
machines but is only part of the solution to Artificial Intelligence. Symbolic AI
corresponds to the higher conscious levels of human thought processes.

Linguists have speculated that higher levels of thought processes are only possible
with the aid of phonograms and ideograms. The superiority of ideograms over
phonograms has proved itself in mathematics and science. Uncritical surrender to
neural fever (or mad cow disease as it is known in the UK) threatens the transparency
and maintainability that software engineering is striving to achieve. An alternative to
surrender is compromise; the two approaches to AI should form different layers in the
pursuit of Artificial Intelligence. If thought processes are organized in hierarchical
layers of abstraction then the interface between symbolic AI and artificial neural
networks is a legitimate area of study. The combination of artificial neural networks
and computer symbolic processing holds the promise of being better than the sum of
the parts.

5.7 Biological and Artificial Neural Networks

Neurons are the primitive constituents of organic brains. A neuron is a nerve cell that
consists of a nucleus, dendrites, axon and synapses, as depicted in Figure 5.7.1. The
synapses form the connection between the axon of one cell and the dendrite of
another. Functionally, the dendrites are receptors and the axon an emitter of bursts of
electrochemical pulses generated by the cells. A neuron produces pulses along its
axon in response to pulses received from other neurons at its synapses. Whether a
neuron decides to ‘fire’, produce a pulse, depends on the combination of the present
state of the neuron and the pulses received from its immediate neighbors. The
similarity with Petri nets is clearly apparent. (For a better informed description of the
physiology of nerve cells the reader is referred to [Crick and Asanuma, 1986].)

Neurons in organic brains are autonomous computational units and each may be
directly connected with up to several thousand other neurons forming a network. The
computational mechanism of each neuron is local and simple. It can only be the
autonomy of neurons, as processing elements and the complexity of interconnections
wherein lies the ability to explore simultaneously many competing hypotheses. The
way neurons interconnect and fire allows the possibility of chain reactions in much
the same way as chain reactions occur in an atomic explosion. This analogy reveals
the way in which explosive parallelism can be achieved by neural systems.

Artificial neural networks are characterized by network topology, node characteristics
and training or learning rules. Though in what follows the three components are
explained separately for pedagogy, they are not independent. Neuron connectivity can
be represented as a directed graph with neurons as the vertices and directed edges
synaptic connections. In general, there can be cycles, closed loops, so that feedback is
possible as depicted in Figure 5.7.2. An artificial neural network adopting this type of
topology [Hopfield, 1982], was partly responsible for the renewed enthusiasm in
connectionist systems.
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Fig. 5.7.1 A simplified organic neuron

If there is no feedback the network forms a DAG (directed acyclic graph) and is
stratified, as illustrated in Figure 5.7.3. This form of topology is exemplified by,
Nettalk [Sejnowski and Rosenberg, 1985]. Nettalk’s ability to read text aloud
contributed to the revival of interest in connectionist systems. External stimuli feed
into a bottom layer of neurons and the output is taken from the top layer; there can be
many layers of hidden neurons in-between. There may be different numbers of nodes
in each layer and such networks can be used to classify input patterns, the number of
output nodes reflecting the number of classes.

Fig. 5.7.2 The ’feed-all’ network

It is in the DAG topology that the potential for explosive parallelism can best be seen
when the hidden layers have increasing numbers of neurons. The way neurons
interconnect and fire in this topology allows the possibility of chain reactions in much
the same way as chain reactions occur in an atomic explosion.
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Fig. 5.7.3 The feed-forward network

5.8 Self-Replicating Neural Networks

For the sake of definiteness, the network topology chosen for implementation is a
binary tree, but other arrangements can be accommodated as easily. As will be
illustrated, such a neural network can be taught to recognize the parity of input bit
vectors. A binary tree of protoneurons with three layers can be brought into existence
by the GDC process invocation:

become tree(3, O, Is).

where the tree relation is defined by:

//tree(NumberOfLayers, OutputStream, ListOfInputStreams)
tree(NumberOfLayers,A,Ss) if receive(1,NumberOfLayers)

become send([S1|S2],Ss) | protoNeuron(A,S1,S2)
tree(N,A,Ss) if N>1 & N1:=N-1

become protoNeuron(A,A1,A2) | tree(N1,A1,S1s)
| tree(N1,A2,S2s) | concatenate(S1s,S2s,Ss).

A graphical trace of a parallel reduction of the initial agent [á la Ringwood, 1989a] is
given in Figures 5.8.1a and 5.8.1b; active (reducible) agents at each stage are shaded.
The tree process evolves into a tree of generic neurons (the type of neuron will be
specified in the next section).

5.9 Neuron Specialization

There are essentially two types of artificial neurons: analogue neurons [Pitts and
McCulloch, 1947], which are weighted sum threshold activation models, and the
earlier discrete logic gates [McCulloch and Pitts, 1943], which are motivated by
digital hardware (Figure 5.9.1).
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Fig. 5.9.1 a) 1947 Pitts–McCulloch artificial neuron where H, is the Heaviside’s step function
and the weights ωi and threshold Θ are arbitrary real numbers; b) and c) 1943 McCulloch–Pitts
threshold logic gate neurons where the possible weights are +1 or -1 and the thresholds Θ
integer.

Discrete logical neurons are, of course, ideally suited to implementation in
conventional hardware. One mutable form of a logic gate, Probabilistic Logic Neuron
[Aleksander, 1988] (PLN), was chosen for the present chapter for the sake of
definiteness. There is a sense in which the PLN is biologically more realistic than the
analogue McCulloch–Pitts [1947] neuron. In biological neurons it is widely believed
that, before adaptation, a neuron fires or does not with roughly equal probability. The
probability edges towards certainty as the learning process progresses [Sejnowski,
1981; Aleksander, 1988]. Any other form of artificial neuron or network can be
implemented by the same techniques used below.

The PLN is essentially a programmable, probabilistic, logic gate.

//protoNeuron(Axon,Synapse1,Synapse2)
protoNeuron(A,S1,S2) if true

become
pLN(table(Seed,unknown,unknown,unknown,unknown),S1,S2,A).

Initially, the gate type is unspecified (Figure 5.9.2). The constant unknown in the
table is used to indicate that the neuron will produce an indeterministic response (0 or
1) to a binary input pattern. The first parameter of table is used as the seed of a
pseudo random number generator to produce this effect. In this situation, the PLN
produces a 1 or 0 output with equal probability. This stochastic nature endows the
PLN with indeterministic properties that biological neurons are speculated to possess
[Sejnowski, 1981]. (By modifying the tree clause it can be arranged that the different
neurons do not have the same initial seed.)

Fig. 5.9.2 Initial State of the PLN
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As the neural network undergoes training, undetermined truth table entries become
learnt responses to controlled input (Figure 5.9.3).

Fig. 5.9.3 Some partially learnt state

The response behavior is captured by the actor pLN:

//pLN(State,InputStream1,InputStream2,OutputStream)
pLN(State,InputStream1,InputStream2,Output)

if receive([o(S1)|S1s],InputStream1)
& receive([o(S2)|S2s],InputStream2)

become send([o(A)|S3s],Output)
| gate({S1,S2},State, NewState,A)
| pLN(NewState,S1s,S2s,S3s).

The response consists of truth table lookup. If the table value has been learnt, this
value is returned:

//gate(InputPairState, LookUpTable, OuputState, Output)
gate(InputPairState, table(Seed, learnt(T),U,V,W),NewState,A)

if receive({0,0},InputPairState)
become send(T,A) | send(table(Seed,learnt(T),U,V,W),NewState).

gate(InputPairState, table(Seed,unknown,U,V,W),NewState,A)
if receive({0,0},InputPairState)

& NSeed:= if Seed<0 then shiftleft(Seed)XOR3
else shiftleft(Seed) & B:=NSeedmod2
become send(B,A) | send(table(NSeed,unknown,U,V,W),NewState).

gate({0,1},table(Seed, T, learnt(U),V,W),NewState,A) if true
become send(U,A) | send(table(Seed,T,learnt(U),V,W),NewState)

gate({0,1},table(Seed,T,unknown,V,W), NewState,A)
if NSeed:= if Seed<0 then shiftleft(Seed)XOR3
else shiftleft(Seed) & B:=NSeedmod2
become send(B,A) | send(table(NSeed,T,unknown,V,W),NewState)

gate({1,0},table(Seed,T,U,learnt(V),W),NewState,A) if true
become send(V,A) | send(table(Seed,T,U,learnt(V),W),NewState)

gate({1,0},table(Seed,T,U,unknown,W),NewState,A)
if NSeed := if Seed<0 then shiftleft(Seed)XOR3)
else shiftleft(Seed) & B := NSeedmod 2
become send(B,A) | send(table(NSeed,T,U,unknown,W),NewState)
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gate({1,1},table(Seed,T,U,V,learnt(W)),NewState,A) if true
become send(W,A) | send(table(Seed,T,U,V,learnt(W)),NewState)

gate({1,1},table(Seed,T,U,V,unknown),NewState,A)
if NSeed := if Seed<0 then shiftleft(Seed)XOR3

else shiftleft(Seed) & B := NSeed mod 2
become send(B,A) | send(table(NSeed,T,U,V,unknown),NewState).

The algorithm for calculating random bits is taken from Knuth [1969].

A trace of how inputs propagate in parallel through a PLN tree network is shown in
Figure 5.9.4. (The word propagate does not really convey the sense of urgency
associated with combinatorially explosive parallelism.)

5.10 The Teacher Teaches and the Pupil Learns

In artificial neural networks, there is no conventional stored database, no carefully
worked out application specific rules. The only principle that guides the system is that
it incorporates some notion of a right and wrong. It is constructed to strive to respond
correctly. In this way, the network can be self-taught: each input produces an output.
Correct outputs are reinforcing, incorrect outputs cause internal adjustments. By
modifying its internal state, the network strives to achieve favorable responses. At
first, the response is by trial and error; later, as the learning process continues, it
becomes a mixture of trial, error and experience. Eventually the machine behaves as
if it "knew" exactly what it was the instructor was trying to tell it. When the neural
machine has learned something, the instructor does not know at the conceptual level
what is going on inside the machine – it is generally far too complex for that.

Training for a PLN neuron can be effected by a second clause for pLN: the functors t
on the input are used to indicate that the training mode is operating:

pLN(Table,[t(S1,R1)|S1s],[t(S2,R2)|S2s],Output) if true
become send(t(A,R)|S3s,Output) | gate({S1,S2},Table,A)

| training({A,R},Table,{{S1,R1},{S2,R2}},NewTable)
| pLN(NewTable,S1s,S2s,S3s).

Here, the recursive pLN clause simulates a perpetual actor that changes state
according to the training relation. Output response pairs {S1, R1}, {S2, R2} and
{A, R} are used to direct the responses to the proffered inputs back to the nodes
responsible for them. Back-communication naturally lends itself to back-propagation
[Rumelhart et al., 1986], a learning technique for networks with hidden layers of
neurons that was partially responsible for the neural network renaissance. The
training process records the output and amends the lookup table as dictated by the
response for the recursively-reincarnated neuron.
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Fig. 5.9.4 Trace of virtual neurons firing in response to input

It then remains to specify the training algorithm. The method chosen for the present
work, is one of several possibilities [Myers and Aleksander, 1988]:
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• Step 1: Choose an input pattern from some training set and apply it to the input
nodes.

• Step 2: Allow values to propagate through all neurons in the network. (Each PLN
responds according to the state of its truth table.)

• Step 3: If the values on the output connections are the ones expected, the output of
each neuron becomes established (learnt).

• Step 4: Otherwise, return to Step 2 and try again (because the output of each
neuron is stochastic the output will generally be different) until a correct output is
generated or

• Step 5: A ’sufficient’ number of errors has been made suggesting the possibility of
succeeding is effectively zero. In this situation, all nodes are returned to their
initial indeterministic state.

• Step 6: Repeat steps 1 to 5 until ’consistent’ success indicates that all patterns have
been learned:

//training(OutputPair, OldTbl, InputPairs, NewTbl)
training({A,confirmed},table(Seed,T,U,V,W),{{0,R1},{0,R2}},Tbl1)

if true
become send(Tbl1,table(Seed,learnt(A),U,V,W))

| send(R1,confirmed) | send(R2,confirmed)
training({A,incorrect},table(Seed,T,U,V,W),{{0,R1},{0,R2}},T1)

if true
become send(T1,table(Seed,unknown,U,V,W))

| send(R1,incorrect) | send(R2,incorrect)
training({A,confirmed},table(Seed,T,U,V,W),{{0,R1},{1,R2}},T1)

if true
become send(T1,table(Seed,T,learnt(A),V,W))

| send(R1,confirmed) | send(R2,confirmed)
training({A,incorrect},table(Seed,T,U,V,W),{{0,R1},{1,R2}},T1)

if true
become send(Tbl1,table(Seed,T,unknown,V,W))

| send(R1,incorrect) | send(R2,incorrect)
training({A,confirmed},table(Seed,T,U,V,W),{{1,R1},{0,R2}},T1)

if true
become send(T1,table(Seed,T,U,learnt(A),W))

| send(R1,confirmed) | send(R2,confirmed)
training({A,incorrect},table(Seed,T,U,V,W),{{1,R1},{0,R2}},T1)

if true
become send(T1,table(Seed,T,U,unknown,W))

| send(R1,incorrect) | send(R2,incorrect)
training({A,confirmed},table(Seed,T,U,V,W),{{1,R1},{1,R2}},T1)

if true
become send(T1=table(Seed,T,U,V,learnt(A))

| send(R1,confirmed) | send(R2,confirmed)
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training({A,incorrect},table(Seed,T,U,V,W),{{1,R1},{0,R2}},T1)
if true
become send(T1,table(Seed,T,U,V,unknown))

| send(R1,incorrect) | send(R2,incorrect)

5.11 Neural Simulation

The implementation of a neural net described in the previous section has been
successfully taught to recognize the parity of input bit vectors [Kozato, 1988].
Clearly, this means that each PLN has learnt to behave as an Exclusive-Or gate. The
implementation was slow, not the least because of the overhead of process switching.
The speed of process switching is of the order of the response rate of biological
neurons, that is microseconds. Organic neural nets illustrate how fast processing can
be achieved even by such slow processing elements. This is due to the way in which
parallelism is organized into small, equal sized portions without any synchronization
problems. The feed-forward network topology is amenable to explosive
computational parallelism of which organic brains are capable. With this topology of
actors, there is only one producer and ideally many consumers so there is no binding
conflict problem.

As the number of processors is increased, there will be less demand for process
switching. In this regime, the implementation of neurons by software processes could
be a viable proposition. However, to expand this model to a real application on
multiple processors the further factor of processor communication cost must be
considered. Since the communication is only an activation signal, this cannot be too
expensive. Judicious partitioning of neurons across processes minimizes the cost and
this will be particularly beneficial when there are highly interconnected clusters with
few connections between clusters. These virtual neurons can even be allowed to
migrate between processors.

The choice of illustration, a tree network of PLN neurons, was purely for the sake of
explanation and definiteness; the techniques presented here are capable of
implementing any topology, any type of artificial neuron and any training rules. It can
be seen that the computational model of GDC corresponds largely with a
connectionist one. Actors fire or not depending on their internal state and on data
received from other actors. While shared variables do give potential synchronization
problems in GDC when there are multiple producers, a style of programming can be
adopted, such as the feed-forward network, where there are only single producers for
shared variables.

Some features of a neural network implementation in GDC are unusual.  It is
generally believed that neural nets should ultimately be built in hardware. Yet
experience has revealed many difficulties with this philosophy. For example, training
a network is a very slow and painful business. For the network described above,
learning proceeds by a process of trial and error. For each input-output pair, trials are
made a predetermined number of times. This is the accepted regime because the
intended implementation medium is hardware. When the implementation medium is
software, as herein, the number of trials can be adjusted to reflect the number of
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unknown entries in the lookup tables. This is achieved by making the propagation
signals carry information on the internal states of the neurons. This modification for
the above implementation is simple but would be impractical if not impossible to
achieve in a hardware implementation. Thus, for software implementations the
learning phase can be dramatically shortened [Kozato, 1988].

There is some belief that sophisticated cognitive systems can only be built from a
suitable combination of neural networks and symbolic AI techniques [Hendler, 1989].
From this point of view, the advantages of implementing neural nets in a
programming language that is suitable for symbolic manipulation are clear.
Furthermore, for hardware implementations, reconfiguring neural nets and adding
new nodes to accommodate more concepts seems impossible without having great
redundancy. In software, for languages like GDC, this presents no difficulty. GDC
allows dynamic process creation and this allows dynamic neuron creation. The above
section illustrating the dynamic construction of a neural net exemplifies this. Thus, in
a learning situation, new neurons can be created as necessary. This increases the
potential of the system to learn new concepts. Because the language GDC, by
inheritance from Prolog lends itself to partial evaluation, the training sessions could
be viewed in this light. After a training session, a virtual neural net will have acquired
some knowledge. Viewed as partial evaluation, this new goal has been specialized for
the training data. Once a particular neural net has acquired some knowledge, the
resolvent can be saved as a partially evaluated goal. Goals can be composed to give
more complex nets that accumulate knowledge.

The implementation of neural nets in GDC is not just a simulation. It offers an
executable language for describing neural networks and opens the possibility of
dynamically evolving neural systems. This research suggests a new direction for both
neural network research and conventional symbolic AI with a view to their fusion.

In general, neural networks tend to be regarded with disdain by the symbolic AI
community: they are seen as a rival technology. This attitude overestimates the
capability of both connectionist and symbolic systems and as an alternative, the two
technologies might be more usefully viewed as complementary. Hybrid systems
could provide a fruitful line of research for constructing more sophisticated, artificial
cognitive systems. There are of course many possible variations for hybrid systems,
e.g. on the symbolic side rule-based systems or semantic networks, discrete or analog
neurons implemented in software or hardware on the connectionist side. Some
tentative hybrid neural networks have already been proposed, e.g. [Ballard, 1986;
Derthick, 1988; Touretzky and Hinton, 1988; Shastri, 1988 and Shastri, 1989], but
the software-hardware implementation issue of neural networks has not received any
attention. This is because it has naturally been assumed that software implementation
is a temporary expedient and connectionist systems eventually, when the technology
catches up, will be totally implemented in VLSI.

The neural simulation represents an initial step investigating a language-based
approach to hybrid symbolic connectionist systems. By implementing a neural
network in the language GDC, the correspondence between the computational models
of neural networks and Actors are brought to light. Some of the advantages of a
software implementation of connectionist systems are discovered and the simplicity
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with which the construction can be achieved indicates the potential capacity for
parallel processing which GDC languages possess.

5.12 Simulated Life

Conway’s Life game is not as its name might suggest, competitive, nor a game of
chance. Rather it is a deterministic simulation of the evolution of a population of
interdependent individuals. The only randomness is in the choice of the initial state.
Evolution proceeds according to a small number of simple, fixed rules. Life is played
out on a square board in the fashion of chess. Each square or cell may be occupied or
unoccupied. The board is assumed infinite but initially (and subsequently) only
finitely many cells are occupied. The rules describe the evolution of an individual in
terms of the occupancy of neighboring cells.

A cell has four nearest neighbors and a further four next nearest diagonal neighbors.
Each cell passes through a sequence of generations. The occupant of a cell with two
or three occupied neighbors survives to the next generation. A cell with less than two
occupied neighbors dies of loneliness. A cell with four or more contemporaries dies
from overcrowding. Exactly three neighboring cells of an unoccupied cell give birth
(triolism) to a new occupant.

The board is taken to be infinite to avoid introducing special rules for boundary
conditions. Given that there are only going to be a finite number of occupied cells in
any one generation, simulation on an infinite board is approximated by taking a finite
array with cyclic (or twisted) boundary conditions. This means that the simulated Life
Game is played out on a torus or Klein bottle. Such a board on a closed surface can
be thought of as an infinite flat board on which the pattern of the finite colony is
repeated as with a wallpaper pattern. The boundary effects are then explicable in
terms of the state of the neighboring colonies.

The rules that determine the life and death cycle of cells are local. Nevertheless,
given the generational life of a cell the dynamics can be extrapolated to determine the
state of the whole board in successive generations. Such a lock-step simulation can
easily be programmed in an imperative language such as C using arrays to represent
the board. What tends to exclude Prolog programmers from this form of the game is
that the problem domain is naturally expressed in terms of an array of cells. The tree-
like data structures in logic programs do not prevent the representation of arrays but it
is not particularly sympathetic to it. The single assignment of logic variables can
make updating a single element an expensive business [e.g., Eriksson and Rayner,
1984].

GDC having a rather different computational model from Prolog allows computation
via concurrent processes organized by local communication. An actor that accepts
messages to lookup and update its elements can model a mutable array:



Actors and Agents 163

arrayn((trans(lookup(1,Element),Rmgs),E1,E2,...,En) if true
become send(E1,Element) | arrayn(Rmgs,E1,E2,...,En);

...
arrayn(trans(update(1,Element),Rmgs),E1,E2,...,En) if true

become arrayn(Rmgs,Element,E2,...En)
...

This is implemented using tail-recursion so that the recursive actor takes over the
process descriptor of the parent, thus saving the copying of most of the arguments.
Another possibility is to simulate each element of the array by an actor. This will be
demonstrated with the Game of Life below.

Fig. 5.12.1: Representation of a 3x4 torus and Klein board

5.13 Life Yet in GDC

Each cell need never know where it is in the array. For simplicity, only four nearest
neighbors: North; South; East and West will be represented. Each cell of the array
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has a small amount of transitory state, occupation, which it communicates to its
neighbors. The rule concerning a cell dying by overcrowding is simulated by the
definite clause:

//cell(State, North, South, East, West, OutputStream)
cell(State,[occpd|RNs],[occpd|RSs],[occpd|REs],[occpd|RWs],Os)

if true
become send([unoccpd|ROs],Os)

| cell(unoccpd, RNs, RSs, REs, RWs, ROs)

The first argument of cell is its current state. This actor blocks waiting for its middle
four arguments to be instantiated to streams such that the head of each list is the
constant occpd. When this constraint is satisfied, the cell actor can metamorphose
into a similar actor and output its new state on the stream Os.

The other conditions that govern the life of a cell can be represented in a similar way.
As there are a large number of combinations, a more succinct representation is
obtained by denoting the state of the cells by integers: 0 for unoccupied and 1 for
occupied:

cell(State,[Nn|Ns],[Sn|Ss],[En|Es],[Wn|Ws],Os)
if Nn+Sn+En+Wn<2
become send([0|ROs],Os)

| cell(0,Ns,Ss,Es,Ws,ROs)
cell(State,[Nn|Ns],[Sn|Ss],[En|Es],[Wn|Ws],Os)

if Nn+Sn+En+Wn=:=2
become send([State|ROs],Os)

| cell(State,Ns,Ss,Es,Ws,ROs)
cell(State,[Nn|Ns],[Sn|Ss],[En|Es],[Wn|Ws],Os)

if Nn+Sn+En+Wn=:=3
become send([1|ROs],Os)

| cell(1,Ns,Ss,Es,Ws,ROs)
cell(State,[Nn|Ns],[Sn|Ss],[En|Es],[Wn|Ws],Os)

if Nn+Sn+En+Wn>=4
become send([0|ROs],Os)

| cell(0,Ns,Ss,Es,Ws,ROs).
In this situation the guards of the clauses are disjoint and so deterministic.

5.14 Cheek by Jowl

In operation the simplified four nearest neighbor game, a cell is connected to its
neighbors by shared logic variables:

become ...| cell(N,NNs,Os,NEs,NWs,Ns) | ...
| cell(E,ENs,ESs,EEs,Os,Es) | ...
| cell(M,Ns,Ss,Es,Ws,Os) | ...
| cell(W,WNs,WSs,Os,WWs,Ws) | ...
| cell(S,Os,SSs,SEs,SWs,Ss) |...
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A recursively-defined actor may easily generate a (one-dimensional) chain of N cells
connected with two nearest neighbors:

chain(1,Es,Ws,Os) if true
become cell(State, Es, Ws, Os);

chain(N, Es, Ws, Os) if N>1 & N1:=N-1
become cell(State, Es, Ws, Os) | chain(N1,Os,W1s,Ws).

amended to get the connectivity required for a one-dimensional Life game of N cells
on a circle:

cycle(N) if N>1
become cycle1(N, Es, Ws, Os, Es)

cycle1(1,Es,Ws,Os,Ts)
become send(Ws, Ts) | cell(Es, Ws, Os)

cycle1(N, Es, Ws, Os, Ts) if N>1 & N1:=N-1
become cell(Es, Ws, Os) | cycle1(N1,Os,W1s,Ws,Ts).

A two-dimensional generalization of this idea can be used to produce an M by N
array of cells with four nearest neighbors connected as a torus:

torus(M,N) if N>1
become torus(M, N, Es, Ws, Os, Es)

torus(M,1,Es,Ws,Os,Ts)
become send(Ws, Ts) | col(M, s, Ws, Os)

torus(M, N, (M, Es, Ws, Os) | torus(M,N1,Ns,Ss,Os,W1s,Ws,Ts)
This forms a cycle of columns. The columns are then unfolded into a torus:

col(1,Es,Ws,Os)
become cell(Es,Ws,Os)

col(M,Ess,Wss,Oss) if M>1
become send([Os|ROss],Oss) | col1(M,Ns,Ss,Ess,Wss,Os,ROss,Ns)

col1(1,Ns,Ss,[Es|Ess],[Ws|Wss],Os,Oss,Rs) if true
become send(Ss,Rs) | cell(Ns,Ss,Es,Ws,Os)

col1(M,Ns,Ss,[Es|Ess],[Ws|Wss],Os,Oss,Rs) if M>1 & M1:=N-1
become send([Ss|ROss],Oss) | cell(Ns,Ss,Es,Ws,Os)

| col1(M1,Os,S1s,Ess,Wss,Ss,ROss,Rs)

While the suffix s denotes a stream the suffix ss denotes a stream of streams.

5.15 Distributed Implementation

The GDC program for Life described in the previous section has been has been
implemented [Linney and Ringwood, 1992] on a distributed system of workstations.
The game is started with an actor life/3 that has three channels. These are the size of
the board; the maximum number of iterations a cell may go through and a list of the
coordinates of the cells that are initially occupied. To initialize and observe the game
a controller actor is required. Besides the code given above, each cell shares a
command stream with the controller. To initialize particular cells each cell must carry
its identity (x-y coordinate pair) as part of its state. Commands can then be broadcast



166 Chapter 5

to the cells; only those cells with the same identity will change state according to the
commands. To observe the output of the game, a display thread must also share
stream of each cell. The Life program is inherently concurrent, and so is suited to
execution on multiprocessor systems.

At the 1948 Hixon Symposium, von Neumann [1951] reflected on McCulloch and
Pitts’ work on the design of digital computers. Turing's result of a universal
computing-machine suggested to him that there might be a universal construction
machine. A machine which when provided with a description of an automaton and a
component rich environment could construct a copy of itself.

In a manuscript published after his death [1966] von Neumann demonstrated a
Turing-like machine that could reproduce itself. To do this von Neumann imagined
an infinite "chess board" in which each cell is either empty, or contains a single
component. Each component can be in one of several states. A group of occupied
cells in the plane is interpreted as an organism. Such systems have become known as
cellular automata [e.g., Toffli and Margolis, 1987].

The present chapter describes the use of GDC Languages for simulating a particular
cellular automaton, Conway's Life, on a distributed collection of workstations. The
simulation has a similar structure to the simulation of artificial neurons in GDC
Languages as described by Kozato and Ringwood [1990]. The traditional
implementation of the Life game is played in a lock-step fashion. Typically, the grid
of cells being stored as a two-dimensional array with the algorithm updating all the
cells at each generation. This version is very different in that each cell is a process
and cells asynchronously communicate their states to each other. This inherently
concurrent behavior allows cells to be updated in parallel.

Newman [1990] describes an implementation in Parlog of the Life Game, which
came to the attention of the authors after the present simulation was designed.
Newman's implementation lies somewhere in between the conventional
implementation and the one described here in that while the cells are modeled as
processes, they are updated lock-step generation by generation. Newman generates
the cells in two phases. First the cells are generated; then the streams are connected to
nearest neighbors. In this chapter, generation and connection is performed in one
step.

The present asynchronous implementation makes the program much simpler. Despite
the asynchronous communication, a cell cannot advance more than one generation in
front of a neighbor because the next state is determined by the cumulative state of its
neighbors. Generations by generation then, the expected patterns associated with the
sequential implementations of the Game are exhibited.

The original idea that self-replicating automata should be cellular arose from its
origins in the Turing machine and the need to supply a component rich environment
from which to build replicas. With concurrent languages such an environment is not
necessary, as can be seen from the array program that generates the matrix of cells
(from thin air), so that restriction to an array is unnecessary. Systolic algorithms
[Kung, 1982] can be seen as a generalization to other tessellations of the plane. They
were developed to exploit pipeline parallelism, inherent in many algorithms, by the
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use of special purpose hardware. Shapiro [1984] saw the advantages of the use of
GDC for the implementation of such algorithms.

Given that systolic automata can be built in software, there is no necessity for them to
be simple. For example, reactive problem solving agents can be constructed
dynamically. In a real-world situation, things do not usually proceed as planned. The
traditional assumptions made by planning systems, for example STRIPS [Fikes et al.,
1971], are that the environment is totally predictable. The world model is totally
complete and correct, and primitive actions are instantaneous and can never fail. Such
an environment is termed static. In the real world, this is rarely the case, it is a
dynamic, on-going, real-time and unpredictable environment. An agent interacting
with it must be able to behave appropriately - this suggests that the agent should
possess a degree of reactivity and should be created dynamically when demand
arises. The Life simulation should be viewed as an initial investigation into the
possibility of using GDC for building self-replicating agents.

5.16 Agent Micro-Architectures

The notion of a rational agent is that of an agent that has explicit representation of its
own goals and beliefs about its environment. Two lines of approach to multi-agent
systems can be distinguished: macro and micro. The macro-micro distinction is
common to disciplines such as economics and sociology that are metaphors for multi-
agent systems. Microsystems focus on the architecture of an individual.
Macrosystems are concerned with interagent dynamics. The examples so far have
been about macrosystems.

Shoham [1990] proposes an architecture as a specialization of Actors. Following
Dennett [1987] and McCarthy [1979] Shoham endows agents with a state consisting
of mentalistic components: beliefs, capabilities, choices, commitments etc. Following
Searle [1969], Cohen and Perrault [1979], agents communicate with other agents by
Speech-acts. Speech-act theory categorizes communication as informing, requesting,
offering and so on. In GDC, a Shoham agent would be similar to the client actor
described in the previous chapter:

//agent0(MessageStream, Beliefs, Commitments)
agent0([inform(Fact)|Stream], Beliefs, Commitments) if true

become
inform(Fact,Beliefs,NewBeliefs,Commitments,NewCommitments)
| agent0(Stream,NewBeliefs,NewCommitments)

agent0([request(Action)|Stream],Beliefs,Commitments) if true
become request(Action,Beliefs,NewBeliefs,Commitments,

NewCommitments)
| agent0(Stream,NewBeliefs,NewCommitments)
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agent0([offer(Action)|Stream],Beliefs,Commitments) if true
become

offer(Action,Beliefs,NewBeliefs,Commitments,NewCommitments)
| agent0(Stream,NewBeliefs,NewCommitments)

etc

The actors inform, request and offer etc execute commitments. Shoham uses a
real-time clock to time the actions, but in GDC time is measured by events and events
are the sending (or receipt) of messages. A real-time clock is a concept, like
inheritance, that does not fit well in distributed systems. Rather than regarding history
as the passage of time, time is considered as the passage of history. If no events have
taken place, no time has passed. This is the philosophy of discrete event simulation.
A local clock is just a monotonic counter:

become clock(A)|send(s(B),A)|send(s(C),B)|send(s(D),C) ...
become clock(s(B)) | send(s(C),B) | send(s(D),C) ...
become clock(s(s(C))) | send(s(D),C) ...
become clock(s(s(s(D)))) | ...

5.17 Metalevel Agent Architectures

An agent’s belief typically includes beliefs about actions the agent can perform and
beliefs about the other agents. Reflexive or meta-level architectures where an agent
reasons about itself and other agents [Maes, 1988] is another micro-architecture.

Being symbolic, GDC shares with Prolog and Lisp an affinity for meta-interpretation.
In Prolog, a simple propositional Prolog meta-interpreter would take the form:

//demo(Program, Goals)
demo(G) if true

become clause(G:-G1) | demo(G1).
demo(G1|G2) if true

become demo(G1) | demo(G2).
demo(true) if true become true.

Here, the demo predicate expresses that the goal G can be demonstrated from the
program P. A clause is represented as a conjoined list terminated by true:

clause(g:-[g1,g2,...,gn|true])

While this is propositional, it can be generalized to the first order case:

demo(G1) if true
become demo(forall(X,G)) | substitute(X,G,Y,G1).

The predicates hold when G1 results from substituting the term Y for the variable X
in G. The Prolog meta-interpreter is nondeterministic, because it is not determined
which clause might demonstrate the goal G. The inbuilt depth-first engine performs
the search.

Because there is no backtracking in GDC, the search has to be programmed. This is
achieved by organizing the alternative search branches as a stream. As a simple
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illustration, a resource bounded meta-interpreter for propositional Prolog in GDC
follows. It is adapted from [Kowalski, 1995]:

//demo(KB,InGoals,Result)
demo(KB,fail,Result) if true

become send(fail,Result).
demo(KB,[]+AltGoals,Result) if true

become send(true,Result).
demo(KB,fail+AltGoals,Result) if true

become demo(KB,AltGoals,Result).
demo(KB,[G|Rest]+AltGoals,Result) if true

become ask(KB,G,D) | dnf([D|Rest],AltGoals, DNF)
| demo(KB,DNF,Result)

Here, the demo agent reduces a stream of InGoals with respect to the definite
clauses in a knowledgebase, KB. Alternative branches of the search space are
represented by disjuncts. That is, the clauses having conclusion G, are represented by
a single list of alternative body goals terminated by fail, e.g.

G←D where D=Alt1+Alt2+...+fail and Alti=[Gi1,Gi2,...,Gin]

Thus, every disjunct is terminated by fail and if a goal G is the conclusion of no
clause in the knowledgebase, ask returns the value fail in its third channel. The actor
dnf computes the disjunctive normal form of its first argument. As the disjunctive
normal form is not unique, this actor behaves as a selection rule.

In the above program, the agent persists until it reduces the goal to true or fails in the
attempt. In practice, agents will have a limited time to reach a conclusion; they will
be resource-bounded. A resource-bounded agent can easily be formed by a slight
modification of the previous program:

//demo(KB,InGoals,OutGoals,Resource)
demo(KB,fail,OutGoals,R) if true

become send(fail,OutGoals).
demo(KB,[]+AltGoals,OutGoals,R) if true

become send(true,OutGoals).
demo(KB,InGoals,OutGoals,0) if true

become send(InGoals,OutGoals).
demo(KB,[G|Rest]+AltGoals,OutGoals,R)

if R>0 & R1:=R-1
become ask(KB,G,D)

| dnf([D|Rest],AltGoals, DNF)
| demo(KB,DNF,OutGoals,R1)

demo(KB,InGoals,OutGoals,R) if otherwise
become send(InGoals,OutGoals)

Here, the demo agent reduces a stream of InGoals to a stream of OutGoals with
respect to the definite clauses in the knowledgebase, KB. This is done within
Resource backward chaining steps, so this agent is bounded. The work that dnf
does is not included in the resource count but probably should be.
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The demo agent can be modified to include abducibles:

//demo(KB,Abducibles,InGls,OutGls,Resource)
demo(KB,Abs,{fail,Beliefs},OutGls,R) if true

become send({fail,Beliefs},OutGls).
demo(KB,Ab,{[],Beliefs}+AltGls,OutGls,R) if true

become send({true,Beliefs},OutGls)
demo(KB,Ab,InGls,OutGls,0) if true

become send(InGls,OutGls).
demo(KB,Ab,{[G|Rest],Beliefs}+AltGls,OutGls,R)

if R>0 & R1:=R-1
become ask(KB,Ab,{[G|Rest],Beliefs},D)
| dnf([[D|Rest]+AltGLs, DNF)
| demo(KB,Ab,DNF,OutGls,R1)

demo(KB,Ab,InGls,OutGls,R) if otherwise
become send(InGls,OutGls)

The knowledge base is extended with a set of abducibles, Ab. The ask agent returns
true if the goal is a belief or an abducible. If not already a belief, the abducible is
added to the set of beliefs. The actor dnf also has to be modified to handle beliefs
appropriately.

5.18 Actor Reconstruction of GDC

Hewitt [1985] argues that systems of interconnected and interdependent computers
are qualitatively different from the self-contained computers of the past. The
argument goes as follows: if, to avoid the von Neumann bottleneck, decision making
is decentralized, no system part can directly control the resources of any other system
part (otherwise it would itself become a bottleneck). The various autonomous parts
must necessarily communicate with one another if anything is to be co-operatively
achieved. Response from a remote service typically has latency. Consequently,
communication should be asynchronous so that the local computation can continue
and do something useful rather than waiting for a response. This contrasts with CSP
where communication is synchronous.

Kahn and Miller [1988] argue that most current programming languages are
inadequate for large-scale open systems. They say there are two notable exceptions
Actors and GDC. In distributed systems the remote procedure call (RPC) is favored
because it to some extent it imitates the procedure call of third generation languages.
However, the synchronous call/return of RPC can cause an inefficient use of
resources. A response from a remote server typically has a long latency. While
asynchronous message passing is possible, it is difficult to integrate with third
generation languages.

RPC differs from procedure call in that it is call by value. Call by reference cannot be
achieved because remote nodes do not share the same address space. A local
procedure call cannot usually be replaced by an RPC. It cannot easily transmit
mutable values.
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One approach to the problem is at the operating system level. Mach [Rashid, 1988],
for example, distinguishes between threads and tasks. While threads are loci of
control sharing the same address space, tasks are not. Processes (threads or tasks)
send messages to named ports (message queues). Port names can be passed in
messages but the message queue is mutable.

However, an operating system is not a programming language. In an operating
system, the criterion of locality is address space while for procedure calls it is local
variables. A programming language allows a decoupling of concurrency and the
allocation of processes to processors. This transparency between local and remote
affords scalability.

Both Actors and GDC can be rationalized from the starting point of asynchronous
message passing agents. According to Russell and Norvig [1995], an agent can be
viewed as anything perceiving its environment through sensors and acting upon that
environment through effectors. The actions are not generally random: there is some
correlation between percept and action. For software agents, perceptions are received
messages. The characteristics of a software agent are:

• asynchronous message passing;
• local decision making.

Point-to-point asynchronous communication allows locality to be expressed and
optimized. The local decision making decides which actions, if any to perform. A
primitive action is to send a message. In its primitive form, the reactive agent, the
behavior can be specified by a set of stimulus response pairs, such as the decision
tables of Chapter 3. Alternative behaviors are discriminated by the message received.

Subsequent behaviors can be defined inductively by a network of agents that replace
the agent. In Actors, the replace is specified by become and create. In GDC it is
only specified by create. The action become is distinguished from create in Actors
by the inheritor of the message queue. The speculation is that rational agents can be
built up from herds of reactive agents by programming. A rational agent is one that
behaves logically or maximizes its own utility.

Kornfield and Hewitt [1981] extend the principles of Actor theory, to provide what
they call a scientific community metaphor. They claim that scientific communities
behave as parallel systems, with scientists working on similar problems concurrently
with other scientists. This is reminiscent of the blackboard metaphor described in
Chapter 1. Hewitt [1985] explains the idea of open systems in distributed AI; an open
system is a large collection of computational services that use each other without
central co-ordination, trust or complete knowledge of each other. This is reminiscent
of open systems theory [von Bertalanffy, 1968]. It contrasts with, closed systems and
conjures up completeness and the Closed-World assumption of databases as invoked
by Absys, Planner and Prolog to explain negation as failure.

Agent identity is recognised as an essential problem of multi-agent systems [Gasser
and Briot, 1992]. Fixed boundaries for objects are considered to be too inflexible and
do not reflect theoretical positions in which agents are dynamically defined by
reference to their changing position in the community. Computational units may
participate in different agents. It is thus necessary to distinguish between agents and
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actors. There is nothing to maintain a stable identity when an agent is composed of
ever changing definitions and patterns of interaction.

When the number of agents becomes large, individual referencing becomes difficult
so it becomes necessary to organize them into larger entities. Most conceptions of
group employ a representative agent that serves as a surrogate for the group. This
surrogate becomes a bottleneck and conflicts with the initial intentions.

With Actors, the notion of identity is somewhat confused because identity is
manifested in different ways. To send a message an agent must be able to take for
granted some predictable stable quality of the recipient, such as the name of the
mailbox. An agent can also be identified by its behavior: the messages it is prepared
to accept and its subsequent behavior. In Actors, a name is associated with an
inductively defined behavior. A name is also associated with a mailbox (a message
queue). The two are associated by the create action. The become action relates the
mailbox name to subsequent behavior. While the inductively defined behavior is
shortlived, a message queue is long lived. The forward actor that serves no useful
purpose (no decisions to make) exemplifies the problem and it is left to the garbage
collector to remove. There is no explicit destruction of actors in the Actor language.

The message queue has a long-lived identity whereas process behavior has a short-
lived identity. Tomlinson and Singh [1989] suggest reifying the message queue in
Actors to gain some control over the acceptance of messages. That is, the queue may
be accessed other than by its head. Other authors suggest multiple message queues.
This was noted in the previous chapter where it was shown how in GDC languages a
message queue can be built up from a nesting of channels.

The essential difference between Actors and GDC is that Actors names local
variables and message queues while GDC only names channels. Message queues or
mailboxes allow many to one communication. In GDC, this must be done with an
explicit merge. Channels have the same lifetime as behaviors; they can only receive
one message.

There have been a number of attempts to simulate Actors in GDC languages:
Vulcan [Kahn et al., 1986]; Mandala [Ohki et al., 1987] and POLKA [Davison,
1992]. As can be understood from above, this simulation essentially consists of
implementing a message queue as a list of channels and hiding from view. As can
also be seen from this section and as Kahn [1989] admits, this is not necessarily an
advantage.

5.19 Inheritance Versus Delegation

A common feature of object-oriented languages is encapsulation (locality).
Inheritance is an additional feature of sequential object-oriented languages such as
Smalltalk and C++. Object-oriented languages such as Actors and ABCL [Yonezawa,
1990] emphasize concurrency as a characteristic. ABCL [Yonezawa, 1990] provides
two message queues with each object, a normal one and an express one. These
languages are sometimes referred to as object-oriented concurrent languages,
OOCLs. Numerous authors [America, 1987; Briot and Yonezawa, 1987; Chaffer and
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Lee 1989; Papathomas, 1989; Tomlinson and Singh, 1989] have pointed out the
conflicts between inheritance and concurrency that break encapsulation. Matsuoka
and Yonezawa [1993] call the phenomenon inheritance anomaly.

In most OOCLs, the programmer explicitly programs the synchronization, the guard
in GDC, to restrict the set of acceptable messages. The inheritance anomaly is that the
synchronization code cannot be effectively inherited. This is illustrated with the
bounded buffer example of Matsuoka and Yonezawa:

b_buf([put(Item)|Tasks],List\EndList) if true
become send([Item|NewEndList],EndList)

| buffConsumer(Tasks,List\NewEndList)
b_buf([get(Contents)|Task],[Item|List]\EndList) if true

become send(Item,Contents)
| buffConsumer(Tasks,List\NewEndList).

A put message stores an item in the buffer, a get message removes it. Upon creation,
the buffer is in the empty state.

become b_buf(Tasks,EndList\EndList) | ....

Now consider the a subclass gb_buf which accepts an additional message gget().
The behavior of gget() is almost identical to that of get(), with the exception that it
cannot be immediately accepted after a put() message. This can only be handled by
adding a state variable, afterPut. That is b_buf must be redefined to account for the
newly added method. The problem is that gget() is history sensitive. This is similar to
the Brock–Ackerman anomaly [1981] described in Chapter 4.
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Chapter 4

Event Driven Condition Synchronization

By relieving the brain of all unnecessary work, a good notation sets
it free to concentrate on more advanced problems, and in effect in-
creases the mental power of the race. Before the introduction of the
Arabic notation, multiplication was difficult, and the division even
of integers called into play the highest mathematical faculties.
Probably nothing in the modern world would have more astonished
a Greek mathematician than to learn that ... a large proportion of
the population of Western Europe could perform the operation of
division for the largest numbers. This fact would have seemed to
him a sheer impossibility. ... Our modern power of easy reckoning
with decimal fractions is the almost miraculous result of the grad-
ual discovery of a perfect notation.

Alfred North Whitehead (1861–1947)

The development of GDC was neither as analytical nor informed as Chapter 3 sug-
gests. In that chapter, the premature binding problem was the motivation for the
change of synchronization from control flow to condition synchronization. The pres-
ent chapter shows how the combination of the logic variable and condition synchro-
nization leads to stream processing. A stream is an incrementally constructed se-
quence of data objects, usually a linear list. Closer examination of the condition syn-
chronization reveals a remnant of the premature binding problem, the binding conflict
problem. The language is further refined as a result of this.

Stream processing was introduced by Landin [1965] in the context of functional pro-
gramming. Landin proposed lazy evaluation as the appropriate mechanism for proc-
essing streams. Friedman and Wise [1976] showed the relation between lazy evalua-
tion and coroutining with a designated producer. Earlier, Kahn [1974] proposed co-
routines as a mechanism for processing streams. In Kahn’s model, a parallel compu-
tation is organized as a set of autonomous threads that are connected to each other in
a network by communication channels (streams). The model was suggested as suit-
able for systems programming. While the theory only allows deterministic programs,
Kahn speculated that it would be possible to extend the idea to indeterministic pro-
grams. Kahn and McQueen [1977] extended Kahn’s model to allow dynamic thread
creation and termination. They proposed a functional syntax that relieved the pro-
grammer of the burden of programming the transfer of control. This subordinated the
transfer of control between subroutines to the binding of variables (dataflow). In the
paper, Kahn and McQueen suggest that streams may be broadened from linear lists to
trees and tableaux. Dennis [1976] and Arvind et al [1977] augmented functional
stream languages with a primitive indeterministic binary stream merge operator. The
operator accepts two input-streams and produces an output stream that interleaves
their elements. Park [1980], Brock and Ackerman [1981] and Smyth [1982] exten-
sively studied the required properties of merge operators.
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Van Emden and De Luceana [1979] used dataflow coroutining to embed streams in
logic programming. Clark and Gregory [1981] added guards to further restrict the
nondeterminacy. Streams will be illustrated with an archetypal example, the Sieve of
Erastosthenes, used by Kahn and McQueen [1977]. Erastosthenes was a 3rd-century
BC Alexandrine Greek philosopher who produced the first estimate of the circumfer-
ence of the earth. This was calculated from the length of shadows cast by the sun.
Erastosthenes’ Sieve was at one time the basis of special purpose hardware for calcu-
lating large primes. The method has since been superseded by probabilistic methods.

4.1 Streams for Free

A Prolog version of Erastosthenes’ Sieve is given by Clocksin and Mellish [1981, 2/e
p170] (some of the predicate names have been changed to protect the innocent):

%primes(Limit, List_of_primes_less_than_limit)
primes(Limit,Ps) :- natNums(2,Limit,Ns), sieve(Ns,Ps).

%natNums(Low, High, List_of_consecutive_nats_between_low_and_high)
natNums(Low,High,[]) :- Low>High, !.
natNums(Low,High,[Low|Rest]) :- Low=<High, !,

M:=Low+1, natNums(M,High,Rest).

%sieve(List_of_naturals, Sublist_of_primes).
sieve([],[]).
sieve([P|Ns],[P|Ps]) :- filter(P,Ns,Fs), sieve(Fs,Ps).

%filter(Prime, List_of_nums, Sublist_without_multiples_of_primes)
filter(P,[],[]).
filter(P,[N|Ns],[N|Fs]) :- 0=/=NmodP, !,

filter(P,Ns,Fs).
filter(P,[N|Ns],Fs) :- 0=:=NmodP, !, filter(P,Ns,Fs).

In the example, Ns is an ordered list of consecutive natural numbers beginning with 2
and with final element Limit; Ps is an ordered list of all primes less than Limit. The
list of primes is obtained by dynamically sieving the list of natural numbers for mul-
tiples of primes as they are discovered. This Prolog program is very algorithmic in
nature not the least because of the cuts (one red and two green). The program exploits
the ordering of clauses and goals in the bodies of clauses. It is a classic example of
the use of Prolog for data construction. The functional decomposition is such that the
list Ns is sieved in turn for multiples of primes starting with the smallest. The trawl
for multiples of each prime is completed before the sieve for multiples of the next
prime is begun. The first element of the list of natural numbers is 2. Multiples of 2
are excised from the rest of the list. The first element of the sieved list, 3, is not a
multiple of 2 and, since the original list of natural numbers was ordered, must be
prime. The rest of this list is sieved for multiples of 3 and so on. This would be re-
garded as a bad example of logic programming by purists, because of its use of a red
cut and the implicit use of Prolog control features.
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The GDC equivalent appears almost the same as the Prolog program:

//primes(Limit, List_of_primes_less_than_limit)
primes(Limit,Ps) :- true

| natNums(2,Limit,Ns), sieve(Ns,Ps).

//natNums(Low, High, List_of_consecutive_ints_between_low_and_high)
natNums(Low,High,Ns) :- Low>High

| Ns=[].
natNums(Low,High,Ns) :- Low=<High, M:=Low+1

| Ns=[Low|N1s], natNums(M,High,N1s).

//sieve(List_of_naturals, Sublist_of_primes).
sieve([],Ps) :- true

| Ps=[].
sieve([P|Ns],Ps) :- true

| Ps=[P|P1s], filter(P,Ns,Fs), sieve(Fs,P1s).

//filter(Int, ListOfInts, Sublist-multiples)
filter(_,[],Fs) :- true

| Ps=[].
filter(P,[N|Ns],Fs) :- 0=/=NmodP

| Fs=[N|F1s], filter(P,Ns,F1s).
filter(P,[N|Ns],Fs) :- 0=:=NmodP

| filter(P,Ns,Fs).
However, the operation of the GDC program for Erastosthenes Sieve is very different
from the Prolog original. Firstly, the list of natural numbers does not have to be com-
plete before the sieving begins. The sieving can begin as soon as its first argument
becomes a list. That is, it is activated (fired) as soon as its first argument becomes
instantiated. Similarly, the list of natural numbers does not have to be completely
sifted for multiples of one prime before sifting can begin for multiples of the next
prime.

The behavior of GDC arithmetic infix primitive :=, in the guard of the second clause
for the generator natNums numbers, is somewhat different from its Prolog counter-
part. The second clause is not a member of the conflict set until the right hand argu-
ment of the arithmetic constraint is ground (no variables) to an arithmetic expression.
When the argument is ground the primitive evaluates the expression and binds the
value to the variable in the left-hand argument. The left hand argument is not allowed
to be a variable appearing in the head of the clause, because this would violate the
condition that the guard has to be passive. In this way, expression evaluation does not
cause any effect observable by other concurrent threads before the appropriate clause
to reduce the thread has been determined. A filter thread can begin as soon as its first
argument becomes a list and its second argument a natural number. The =:= operator
is similar to the := primitive: its parent clause is not a member of the conflict set until
both its arguments are bound to an arithmetic expression. The constraint is satisfied if
the value of both arguments is the same.
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The concurrent program dynamically sets up one filter thread for each prime detected
so far. These threads filter multiples of their designated prime from their input lists
and pass the remainder of the integers to their output lists. Thus, at any one time there
can be a number of filter threads active each one disposing of integers that are non-
prime or passing on to its neighboring filter integers that have not yet been estab-
lished to be non-prime. An initial denial:

:- answer(Ps), primes(30,Ps).
will at some stage of a computation (it is deterministic) resolve into:

:- answer([2,3,5|Ps]), natNums(30,Ns), filter(2,Ns,F2s),
filter(3,F2s,F3s), filter(5,F3s,F5s), sieve(F5s,Ps).

The nascent list of natural numbers Ns is successively filtered (a dynamically
changing pipeline) for multiples of primes. The synchronization in this program is
totally administered by guard conditions and data availability. This is in contrast to
the initial Prolog program where the synchronization is achieved by control flow.

This synchronization caused by the flow of binding of variables is a manifestation of
condition synchronization. In the pattern-directed GDC program, a partial solution to
the problem can be examined before it is complete. This allows the possibility of
useful nonterminating threads. The natural number generator can be modified to pro-
duce an infinite sequence of naturals and the sequence of primes can be produced
incrementally:

//primes(List_of_primes_less_than_limit)
primes(Ps) :- true

| natNums(2,Ns), sieve(Ns,Ps).

//natNums(Previous, List_of_consecutive_ints_following_previous)
natNums(M,Ns) :- M1:=M+1

| Ns=[M|Rest], natNums(M1,Rest).
This behavior is not possible in the original Prolog program because of control syn-
chronization; the list of natural numbers has to be completed before any sieving be-
gins. (Of course, a meta-interpreter can be written in Prolog to achieve this behavior.)

4.2 A Picture is Worth a Thousand Words

The stream threading of GDC lends itself to a diagrammatic plumbing representation.
This representation is not intrinsic to the language but it does help novices to assimi-
late quickly this new computational model for logic programming. After several re-
ductions (or partial evaluation steps) an initial denial:

:- answer(Ps), primes(Ps).
becomes:

:- answer([2,3,5|Ps]), natNums(6,Ns), filter(2,Ns,F2s),
filter(3,F2s,F3s), filter(5,F3s,F5s), sieve(F5s,Ps).

and is represented in Figure 4.2.1.
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Fig. 4.2.1 The sieve pipeline after several reductions

Similar diagrams can be used to represent clauses. The clause:

sieve([P|Ns],Ps) :- true
| Ps=[P|P1s], filter(P,Ns,Fs), sieve(Fs,P1s).

is pictorially illustrated in Figure 4.2.2.

Fig. 4.2.2 The sieve Clause

The box at the top of Figure 4.2.2 denotes the guard. Further elaboration of the
graphical representation of GDC is presented in Ringwood [1987] and Tanaka
[1993].
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Figure 4.2.1 would be familiar to a designer of signal processing systems. The build-
ing blocks of signal processing are generators, transducers, filters and integrators.
Generators produce signals: natNums is an example of a generator. Filters remove
part of the signal as filter does above. Transducers transform the signal; an example
of a transducer is double which doubles the integer elements of a stream:

//double(Integer_Stream, Two*Integer_Stream)
double([N|In],Out) :- N2:=N+N.

| Out=[N2|Out1], double(In,Out1)
double([],Out) :- true | Out=[].

Integrators accumulate signals; an example is a moving average of stock market share
prices. The following GDC program segment adapted from [Parker, 1990], is de-
signed to calculate the five day moving average of closing share prices:

//movingAvg(#Items_averaged, Data_stream, Moving_average)
movingAvg(N,[Head|Tail],Mavs)

:- Mavs=[MavHead|MavTail],
oneAvg(N,N,Tail,Head,MavHead),
movingAvg(N,Tail,MavTail).

//oneAvg(#Items, Items_remaining, Data_stream, Running_total, Av)
oneAvg(N,M,[Head|Tail],Acc,Av) :- M>1, M1:=M-1, Acc1:=Acc+Head

| oneAvg(N,M1,Acc1,Av).
oneAvg(N,1,_,Acc,Av) :- A:=Acc/N | Av=A.

4.3 Dataflow Computation

The signal processing analogy and the pipeline diagrams proposed above are similar
to those used in constraint solving (Chapter 1) and dataflow computing. Dataflow
control claims to address the issues of latency and synchronization in distributed
programming (Chapter 3). Dataflow computing arose out of the graphical analysis of
program behavior called dataflow graphs. A dataflow graph is a directed graph con-
sisting of named nodes that represent operations and arcs that represent data depend-
encies among nodes. A numerical example is depicted in Figure 4.3.1.

Dataflow computing was predicted in Brown [1962]. Petri nets [Petri, 1962] are an-
other graphical based notation used to represent concurrent systems. A Petri net con-
sists of a set of places, a set of transition bars and a set of directed edges, as in Figure
4.3.2. Each transition bar has an associated set of input places and an associated set of
output places. The presence or absence of tokens at places represents states of the
system. Transition bars represent possible changes of state. A transition bar can only
fire (i.e. change state) when each of its places holds at least one token. When a bar
fires, it removes one token from its input places and deposits one token at each of its
output places.
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Fig. 4.3.1 Dataflow graph f

The Petri net in Figure 4.3.2 is easily modele

:- bar1([1|P1],[1|P2],P3), bar2(P3,P1

bar1[[1|P1],[1|P2],P3) :- true
| P3=[1|P31], bar1(P1,P2,P31).

bar2[[1|P3],P1,P2) :- true
| P1=[1|P11], P2=[1|P21], bar2(P

p1

Fig. 4.3.2 An exa

Karp and Miller [1966] used dataflow grap
model, a generalized program counter gove
[1967] proposed that activations of operati
input arcs. Independently, Adams [1968] ad

*

∧2

-*(-1)

acb
*4
or a root of a quadratic

d in GDC:

,P2).

3,P11,P21).
p2

p3

b1

b2

mple Petri net

hs to study parallel
rns the control of op
ons are controlled by
ded the notion of pr
*2
√

-

/

 programs. In their
erations. Rodriguez
 conditions on the
opagating operands



110 Chapter 4

over arcs of the graph. Tesler and Enea [1968] contributed the idea of a single as-
signment language for formulating dataflow programs.

Dennis and Misunas [1975] gave the first proposal for a computer architecture using
dataflow principles. Dennis led the Computer Systems Group at MIT Lab where
much of the early architecture work was done. Davis [1978] produced the first opera-
tional hardware dataflow processor. Lucid [Ashcroft and Wadge, 1975] was a lan-
guage specifically designed for program proving. It is a first order functional lan-
guage that predates Kahn and McQueen [1977]. While Lucid was developed for its
formal properties, these properties were reportedly a great help in its efficient imple-
mentation on dataflow architectures [Ashcroft et al., 1985]. Another single assign-
ment language designed to exploit dataflow architectures that claims to be a replace-
ment Fortran is Sisal [McGraw et al., 1985]. Waters [1979] developed a program to
analyze Fortran programs. He found that 60% of Scientific Fortran libraries could be
formulated as generators, transducers, filters and integrators.

Lisp was given a dataflow implementation [Wathansian, 1978] on FLO [Egan, 1980],
a decentralized dataflow machine. Early in the program, the Japanese Fifth Genera-
tion experimented with dataflow architectures for the implementation of FGHC
[Yuba, et al 1990]. The first paper to propose dataflow execution for Prolog was
[Morris, 1980]. Ito et al [1983; 1985] and Hasegawa and Mamnmiya [1984] took up
this idea. The first reported dataflow implementation of Prolog was [Wise, 1986].
Although GHC is a dataflow language, the Japanese implementation was done in
software. A hardware implementation of GHC was completed on the CSIRAC II
dataflow architecture in Australia [Rawling, 1989].

The language GDC introduced in Chapter 3 is a condition-synchronized language.
This is more than just dataflow synchronization. The input arguments of functions in
dataflow languages are normally scalar datatypes. In contrast, the arguments of GDC
are compound data structures. Guard satisfaction for compound data structures can
run to several hundred machine instructions whereas for scalar datatypes they can be
one machine instruction. In dataflow architecture the guard test for all operations is
synchronized. There is no concept of thread. This is why specialized hardware is of
concern in dataflow languages. The architecture of dataflow machines is not unlike
that for parallel production systems. In the analogy operations correspond to produc-
tion rules. The operations in dataflow languages are, however, usually deterministic.
All operations that are in the conflict set are fired in parallel.

4.4 Dataflow Design

Dataflow diagrams (DFDs) have been exemplified as a tool for the analysis of soft-
ware requirements [DeMarco, 1978; Gane and Sarson 1979]. Steer [1988] has shown
how DFDs map directly onto GDC. DFDs model synchronously communicating
threads that transform incoming streams to outgoing streams. The threads are hierar-
chically decomposed into primitive threads and data stores. A typical dataflow hierar-
chy is shown in Figure 4.4.1.
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context diagram

external entities DFD 0

process 01 DFD 02 process 03

process 021 store 022

Fig. 4.4.1 A typical dataflow hierarchy of diagrams

The root of the hierarchy, the context diagram, isolates the domain of the problem
and shows all flows from external entities. In the dataflow diagrams, the dataflows
are made explicit. This can be illustrated in GDC:

:- contextDiagram

contextDiagram :- true
| externalEntities(ArgE1,ArgE2,ArgE3),

dfd0(ArgE1,ArgE2,ArgE3).

dfd0(ArgE1,ArgE2,ArgE3) :- true
| thread01(ArgE1,Arg01,...,Arg0n),

dfd02(ArgE2,Arg01,...,Arg0p,..., Arg0m),
thread03(ArgE3,Arg0p...,Arg0q).

The new arguments show the dataflows between the subdiagrams of the level zero
diagram:

dfd02(ArgE2,Arg01,...,Arg0p,...,Arg0m):- true
| thread021(ArgE2,...,Arg0p,...,Arg1p),

dataStore221(Arg1n,...,Arg1q).
A top level goal:

:- contextDiagram.
reduces directly to the primitive threads:
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:- externalEntities(ArgE1,ArgE2,ArgE3),
dfd0(ArgE1,ArgE2,ArgE3).

:- externalEntities(ArgE1,ArgE2,ArgE3),
thread01(ArgE1,Arg01,...,Arg0n),
dfd02(ArgE2,Arg01,...Arg0p,..., Arg0m),
thread03(ArgE3,Arg0p...,Arg0q).

:- externalEntities(ArgE1,ArgE2,ArgE3),
thread01(ArgE1,Arg01,...,Arg0n),
thread021(ArgE2,...,Arg0p,...,Arg1p),
dataStore221(Arg1n,...,Arg1q),
thread03(ArgE3,Arg0p,...,Arg0q).

Exactly how the primitive threads and data stores are implemented is shown in later
sections.

4.5 Dataflow Programming

Abelson et al [1985] claim:

... streams can serve as standard interfaces for combining program
modules. By using streams, we can formulate powerful abstractions
that capture a variety of operations in a manner that is both suc-
cinct and elegant.

The Unix pipe exemplifies this sentiment. A Unix system call, pipe(), creates a one
way communication stream, the ends of which can be inherited by child threads al-
lowing two threads to communicate which have a common ancestor. The Unix pipe is
a stream of characters (bytes). Unix pipes have a finite capacity (typically a few thou-
sand bytes). If a thread tries to write to a pipe when it is full, the thread blocks until
the downstream thread consumes some bytes. While there are similarities, the logic
variable in GDC can be used to provide streams that are much more flexible than a
Unix pipe. The GDC code for an amorous producer and coy consumer is:

eagerProducer(Stream) :- true
| Stream=beMine(TailStream),

eagerProducer(TailStream).

dataDrivenConsumer(beMine(Stream)) :- true
| dataDrivenConsumer(Stream).

:- eagerProducer(Stream), dataDrivenConsumer(Stream).
Here, rather than use a list constructor for a stream, when the message protocol is
prescribed a unary functor can be used. This emphasizes that it is not the list structure
that gives rise to stream programming but the nondestructive assignment of variables.
The reason for the long names of the producer and consumer will become clear below
when alternative forms of producer and consumer program are derived. In this pro-
gram, the producer is unrestrained, as the name suggests. Nevertheless, the consumer
thread blocks waiting for its argument to be instantiated to the pattern in the head of



Event Driven Condition Synchronization 113

the clause. When this constraint is satisfied, the consumer thread can reduce to a
similar thread but with the tail of the stream as a parameter.

One possible evaluation scenario for the producer-consumer example is as follows:

:- eagerProducer(Stream), dataDrivenConsumer(Stream).
:- eagerProducer(TailStream), Stream=beMine(TailStream),

dataDrivenConsumer(Stream).
:- eagerProducer(TailStream),

dataDrivenConsumer(beMine(TailStream)).
:- eagerProducer(TailStream),

dataDrivenConsumer(TailStream).
:- eagerProducer(TailStream1), TailStream=beMine(TailStream1),

dataDrivenConsumer(TailStream).
:- eagerProducer(TailStream1),

dataDrivenConsumer(beMine(TailStream1)).
:- eagerProducer(TailStream2), TailStream1=beMine(TailStream2),

dataDrivenConsumer(beMine(TailStream1)).
:- eagerProducer(TailStream2),

dataDrivenConsumer(beMine(beMine(TailStream2))).
.
.
.

If a clause guard is satisfied, the clause describes how a thread named by the clause
head is transformed into the parallel composition of threads described by the body of
the clause. In general, the thread behavior specifies dynamic thread creation:

oldThread(...) :- <constraint>
| newThread1(...), newThread2(...), ...

In contrast to many languages where threads can only be declared statically and are
persistent, e.g., Occam, GDC threads are dynamically created and are ephemeral. In
this respect, thread behavior in GDC is much more like CCS [Milner, 1980] than CSP
[Hoare, 1978].

Traditionally the proponents of logic programming have emphasized its stateless,
side-effect-free nature. This emphasis is justified when the problem to be solved can
be declared without reference to the environment. In concurrent programming, the
very nature of the problem usually contains references to the state of the system.
According to Abelson et al [1985], a thread is said to have state if its behavior is
influenced by its history. In GDC, a thread cannot change its state but only reduce
itself into other threads. From an intuitive point of view, a thread that reincarnates
itself recursively can be thought of as a long-lived thread. Simulating long-lived
threads by ephemeral recursive calls allows the interpretation of local (unshared vari-
ables) as states of a thread. In the following skeleton:

thread(State,[Message|InStream],...,OutStream)
:- <Constraints(State,Message)>
| computeResponse(State,Message,NewState,Response),

OutStream=[Response|TailOutStream],
thread(NewState,TailInStream,...,TailOutStream).
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In general, the new state and the response depend on the initial state and the message.
This skeleton suggests how, in a side-effect-free way, local variables and recursive
ephemeral threads effect long-lived threads that can change state. Streams afford
modularity without the need for state and multiple assignments to variables. The
nonshared variables show how data stores can be implemented in GDC.

In this and a previous example, the effective threads are not just long lived but are
persistent – they never die. Threads can be terminated by specifying an empty thread
behavior:

thread(...) :- <constraints> | true.

The empty behavior can be contrasted with the Occam SKIP and STOP threads and
the forwarder in Actors [Agha, 1986]. The constraints specify the conditions under
which a long-lived thread is allowed to terminate.

A modification of the previous producer-consumer example that illustrates both state
and thread termination is the following:

:- finiteEagerProducer(5,Stream),
terminatingDataDrivenConsumer(Stream).

finiteEagerProducer(N,Stream) :- N>0, N1:=N-1
| Stream=beMine(TailStream),

finiteEagerProducer(N1,TailStream)
finiteEagerProducer(N,Stream) :- N=<0

| Stream=goodbye_cruel_world.

terminatingDataDrivenConsumer(beMine(Stream)) :- true
| terminatingDataDrivenConsumer(Stream).

terminatingDataDrivenConsumer(goodbye_cruel_world) :- true
| true.

The producer only issues five pleas before it withers and dies. The state of this pro-
ducer is the number of outstanding messages. The producer commits suicide when it
has sent the specified number of unrequited appeals. Upon receipt of knowledge of its
suitor's demise ("Goodbye cruel world"), the consumer mortally regrets the rejection
of its suitor.

Replies to messages can be engineered by adding extra variables:

:- finiteEagerProducer(5,no,Stream),
terminatingDataDrivenConsumer(0,Stream).

finiteEagerProducer(N,no,Stream) :- N>0, N1:=N-1
| Stream=beMine(Reply,TailStream),

finiteEagerProducer(N1,Reply,TailStream).
finiteEagerProducer(N,ok,Stream) :- true

| bliss(TailStream).
finiteEagerProducer(N,Reply,Stream) :- N=<0

| Stream=goodbye_cruel_world.
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terminatingDataDrivenConsumer(N,beMine(Reply,Stream))
:- N1:=N+1, N<3
| Reply=no, terminatingDataDrivenConsumer(N1,Stream).

terminatingDataDrivenConsumer(N,beMine(Reply,Stream))
:- N >=3
| Reply=ok, joy(Stream).

terminatingDataDrivencConsumer(N,goodbye_cruel_world)
:- true
| true.

Here, the consumer rejects the producer if less than three appeals are made. When
more than three appeals are made, the consumer accepts the producers advances and
they go onto a different phase of their relationship (which won’t be pursued any fur-
ther).

4.6 Message Passing

The top level of a GDC thread invocation takes the form of a negative clause:

:- <thread behavior>
Thread behavior describes a network of concurrent threads communicating via vari-
ables shared between the threads. These variables are not the usual form of shared
variables in concurrent systems but are like message reception slots. The name mes-
sage reception slot is cumbersome and the word channel will be used in its place. In
concurrent programming two alternatives can be offered as mechanisms for thread
communication: shared mutable data and message passing. With a shared address
space, many threads can potentially assign the same variable. As is well known, com-
peting threads trying to write to the same variable have race conditions, e.g., [Tanen-
baum, 1987]. This can cause inconsistency in the final value of a variable. This final
value is determined by whichever thread last assigns to it. In systems programming
several solutions to race conditions have emerged, such as semaphores [Dijkstra,
1968].

The nature of the problem is made all too vivid by the bank balance example [Filman
and Friedman, 1984], which if your bank is anything like ours, is not impossible. The
bank account example has now become a classic illustration of object-oriented pro-
gramming. Consider the C-like procedure:

deposit(Int Amount) {
Balance:=Balance+Amount;

}

which might naively be used as an access routine to update a computerized bank
account. Imagine that there is $10 000 in the account. Suppose two deposits of $1000
and $5 are made concurrently, a situation that might arise from two simultaneous
transactions in different branches of the bank because of rebates from overcharge by
different credit card companies. (The values of the starting balance and transactions
are different from Filman and Friedman to allow for inflation and the 1987 stock
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market crash.) Executing two deposit routines in parallel can bring about the im-
proved state:

par {
deposit(1000);
deposit(5);

}.
Although considered as primitive operations from the point of view of accessing the
bank account, from a machine view the routine deposit is not atomic. Each operation
of incrementing the account will consist of a sequence of machine instructions such
as:

register Reg;
Reg:=Balance;
Reg:=Reg+Amount;
Balance:=Reg;

where Reg is deemed to be a hardware register. Concurrency can be modeled by the
indeterministic interleaving of atomic actions [Pnueli, 1986; Chandy and Misra,
1988]. Assuming that each statement in the par statement is allotted its own proces-
sor, one possible scenario is:

Reg1:=Balance; //Reg1 = 10000
Reg1:=Reg1+1000; //Reg1 = 11000
Reg2:=Balance; //Reg2 = 10000
Balance:=Reg1; //Balance=11000
Reg2:=Reg2+5; //Reg2 = 10005
Balance:=Reg2; //Balance = 10005

which when you receive your next bank statement will send you scurrying to send a
rude letter to your bank manager.

The bank account example illustrates that it can be unsound for two deposit threads
to modify the variable balance simultaneously. A thread is in a critical region of a
resource if it is testing and modifying the state of the resource. The problem of pre-
venting threads from executing simultaneously in critical regions is called the mutual
exclusion problem but this nomenclature does not describe the problem accurately.
The mutual exclusion problem is one of the division of the test of the state of a re-
source from its modification. If the modification of the state depends on the result of
the test, unsoundness can arise. Another thread can sneak in-between the test and the
modification so that the state information on which the modification is based is no
longer accurate. This explanation provides the more descriptive name of the lost
update problem. In general, threads that arrange their activities so as not to interfere
with another’s activities are said to be synchronized. Synchronization is concerned
with the ordering of actions. (Synchronization also has the connotation of co-
operation of which non-interference is just one aspect.) The naive solution to the
divisibility of test and modification is to make test and modification an atomic action.
But therein lies a complex issue, not the least of which is deadlock, as will be illus-
trated later.

Communication by shared variables is an abstraction of processors sharing the same
address space. As Bal et al [1989] points out, it is possible for a distributed program-
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ming language to have a logically shared memory while being implemented on a
distributed system (where processors have distinct address spaces). Message passing
is an abstraction of communication between processors that do not share the same
address space. Message passing does not have race conditions as it involves data
copying rather than data sharing. Some other agent, the operating system, is responsi-
ble for copying the data from the address space of one thread to that of the other.
Consequently, message passing can be 100 times less efficient than data sharing
[Hennessy and Patterson, 1990].

Whereas in communication by shared variables, a variable can be assigned any num-
ber of times, messages can be assigned only once. There is only one writer of each
message but possibly many readers. The logical-variable of GDC lies somewhere
between the two extremes of shared variable and message. It can be implemented by
either. Logical-variables, like messages, can only be assigned once but there can be
any (finite) number of potential writers. Whereas a message writer is determined at
compiletime, the writer of a logical-variable is determined at runtime. After assign-
ment of a logic-variable, all other threads sharing it will necessarily be readers; this is
similar to multicasting. In a broadcast message system, any thread can read any mes-
sage. In multicast message systems, only a prescribed subset of threads can be read-
ers. In fact, only the equality primitive thread (illustrated in use above) can assign
shared logical-variables. Of the competing equality threads, the successful writer is
the one that gets there first. (By contrast, for shared multi-assignment variables, the
successful writer is the one that assigns last. This is a race condition.) With nonde-
structive assignment variables, race conditions still exist but are somewhat less of a
problem than with multiply assignable variables because the race can only occur
once.

The following example illustrates this:

p(X) :- true | X=a.
p(X) :- true | X=b.

with the scenario:
:- ans(X), p(X), p(X).
:- ans(X), X=a, p(X).
:- ans(X), X=a, X=b.
:- ans(X), a=b.

There is no flaw in the logic but it is purely a bug brought on by indeterminism.
There are two possible bindings for X, a and b, but one part of the conjunction has
made one choice as to which solution should be committed to and the other part of
the conjunction has made the alternative choice. This is called the binding conflict
problem. This is somewhat different from the premature binding problem. In the
premature binding problem, the conflict can be resolved by condition synchroniza-
tion. Here the guards are empty. It is not until after the threads have committed to
their respective clauses that the conflict shows up. That is, the data examination and
data modification are separate actions. Clause invocation bias or unfairness has defi-
nite advantages here. If rather than the choice of clause to reduce the goal being in-
deterministic, alternative clauses are always chosen in textual order this problem
would not occur. This will be assumed to be the case. But clause priority would not
solve the binding conflict problem with the similar program:



118 Chapter 4

:- ans(X), p(X), c(X).
p(a) :- true | true.
p(b) :- true | true.
c(X) :- true | X=a.
c(X) :- true | X=b.

where for perverseness, p is the consumer and c the producer. The difference be-
tween this and the previous example is that both threads are producers. The mutual
exclusion problem is a problem of multiple producers, sometimes called multiple
writers. Additionally, the two producers are calls to the same relation so that in GDC,
where synchronization is specified by the guard of a clause, one thread cannot be
made a producer and the other a consumer.

This suggests variable annotations in the body of a clause similar to Conniver [Suss-
man and McDermott, 1972]:

:- ans(X?), p(X?), p(X).
This is the approach taken in Concurrent Prolog [Shapiro, 1983]. While this may
seem to solve this problem, there is a major drawback; by using this device, programs
lose modularity. The form of the call and not the program definition determines the
behavior of the program. Again, this is not the point at issue. It is not that multiple
producers are necessarily required, but it may not be known at compile time which
will be producer and which consumer. Exactly how such race conditions are dealt
with in GDC will be described below.

4.7 Eager and Lazy Producers

The only form of synchronization in GDC is condition synchronization as specified
by clause guards. This can manifest itself as pattern matching. An incrementally in-
stantiated logic variable can behave like an infinite message buffer. With such asyn-
chronous communication, if threads do not reduce at the same rate, producers can run
ahead of the consumers. The reduction scenario of the eager producer suggests this
situation. In this example, the producer is totally unconstrained while the consumer
blocks waiting for data. This program will work as intended if the consumer con-
sumes faster than the producer produces. If not, the list, a theoretically infinite buffer,
will eat-up the entire physical store.

GDC programs have a fine grain that permits a very high degree of parallelism, and
hence goals are eminently portable to different nodes of a network. In conventional
distributed systems the amount of parallelism available in the language usually ex-
ceeds the limited number of physical processors. In such circumstances, threads are
time-shared. The problem of the eager producer might be solved by giving the con-
sumer a higher priority than the producer has. Primitives can be provided to facilitate
this:

:- eagerProducer(Stream,-1)@priority(-1),
dataDrivenConsumer(Stream).

Nonblocked threads are scheduled according to their priority. This corresponds to the
Occam prioritized parallel composition construct, PRI PAR. In GDC, processors



Event Driven Condition Synchronization 119

with the same priority form a FIFO queue in order of creation. The priority of a child
thread, unless otherwise specified by an @priority annotation, reverts to the default
priority for the user. Dynamic control over priorities may be effected by passing the
priority from parents to children as in:

eagerProducer(Stream,Priority) :- true
| Stream=beMine(TailStream),

eagerProducer(TailStream,Priority)@priority(Priority).
explaining the seemingly redundant second argument in the initial thread invocation
above. This form of control is particularly useful for speculative search (Chapter 6).

When the number of threads exceeds the number of processors, (which is usually the
case) or where the communication overhead would outweigh the benefits of distribu-
tion, some judicious mapping of threads to processors (load balancing) needs to be
made. The problem of mapping threads to processors is, as it should be for maximum
portability, orthogonal to the language. Thread distribution might be achieved in
sympathy with the language in many ways. One possibility is to map a conceptual
tree of threads onto a physical network of processors [Huntbach and Burton, 1988].
One can contemplate dynamic load balancing in shared memory systems or closely
coupled distributed systems, where the cost of communication is low. In loosely
coupled systems, it will be desirable for the programmer to express some control of
the distribution of threads.

Although communication in Transputer networks is, compared to LANs, relatively
inexpensive, it is not without cost. Occam provides placement instructions to enable
the programmer to distribute threads over processors. In a similar way, GDC provides
programmer annotations to facilitate thread distribution. By default, threads are
scheduled on the processor on which their parent ran. Processor mapping annotations
can be direct (specifying a particular processor) or indirect (specifying the direction
(assuming some topology such as a matrix) of a nearest neighbor in which to mi-
grate). An example is:

foo(State,...) :- <determine(State,NextProcessor)>
| bar1(...)@processor(4), // on specified processor

bar2(...)@processor(next), // on next processor (ring)
bar3(...)@processor(east), // in specified direction (mesh)
bar4(...), // stay put
bar5(...)@processor(Next). // on dynamically computed

// processor

Note that NextProcessor is determined dynamically. Partitioning processors among
processors and scheduling is essentially orthogonal to the language. By combining
partial evaluation (Chapter 9) with partitioning scheduling techniques it is expected
that parallel architectures can be better exploited. The myths of load balancing are
explained in Wikstrom et al. [1991]. Partial evaluation transforms a general program
into a specialized program by taking advantage of information available at com-
piletime. Such information could be processor topology. This differs from conven-
tional compilation techniques. Conventional compilers seek to optimize the execution
of procedure calls and data-structure manipulations. Partial evaluation seeks to elimi-
nate such operations by performing them in advance of runtime.
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Thread priority will not solve the problem of the over eager producer if the producer
and consumer are run on different processors. As an alternative, if the producer is
known to be faster than the consumer is, the role of the producer and consumer can
be reversed as in the program:

:- demandDrivenProducer(Stream), eagerConsumer(Stream).

demandDrivenProducer([Message|Stream]) :- true
| Message=msg(be_Mine), demandDrivenProducer(Stream)

eagerConsumer(Stream) :- true
| Stream=[Message|TailStream], eagerConsumer(TailStream).

In this turnabout, the consumer solicits devotions from the producer by forming a list
of message variables for the producer to instantiate. Now, the consumer can run arbi-
trarily far ahead of the producer.

If it is not known which of the producer and consumer is the faster, synchronous
communication can be programmed by giving both the producer and consumer a
pattern matching constraint:

:- dataDrivenConsumer([Msg|List]),
demandDrivenProducer([Msg|List]).

demandDrivenProducer([Message|Stream]) :- true
| Message=msg(be_Mine), demandDrivenProducer(Stream).

dataDrivenConsumer([msg(Contents)|Stream]) :-
| Stream=[Message|TailStream], dataDrivenConsumer(TailStream).

Here, the producer and consumer have to be hand started, otherwise they would both
block (deadlock). With this program there is only one possible execution scenario:

:- demandDrivenProducer([Message|List]),
dataDrivenConsumer([Message|List])

:- demandDrivenProducer(List), Message=msg(be_Mine),
dataDrivenConsumer([Message|List]).

:- demandDrivenProducer(List),
dataDrivenConsumer([msg(be_Mine)|List]).

:- demandDrivenProducer(List), List=[Message1|List1],
dataDrivenConsumer([Message1|List1])

:- demandDrivenProducer([Message1|List1]),
dataDrivenConsumer(Message1|List1)

:- demandDrivenProducer(List1), Message1=msg(be_Mine),
dataDrivenConsumer([Message1|List1]).

:- demandDrivenProducer(List1),
dataDrivenConsumer([msg(be_Mine)|List1]).

:- demandDrivenProducer(List1), List1=[Message2|List2],
dataDrivenConsumer([Message2|List2]).
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:- demandDrivenProducer([Message2|List2]),
dataDrivenConsumer([Message2|List2]).
.
.
.

The producer and consumer are alternately blocked and progress lock step.

The synchronous communication programmed above with asynchronous communi-
cation effectively turns the infinite List buffer into a one-slot buffer. Given that there
is only one consumer in this situation, a used slot can be garbage collected straight
away and the old slot can even be re-utilized. It is possible to build some housekeep-
ing of this kind into the compiler [Kemp and Ringwood, 1990]. Still, it is unlikely
that all garbage collection can be done in this way and some runtime scavenging will
be necessary.

Further modifying the code for the consumer in the one-slot-buffer program can pro-
duce a multislot buffer.

:- Channel=[_,_,_,_|EndList], buffConsumer(Channel\EndList),
dataDrivenProducer(Channel).

buffConsumer([msg(Contents)|List\EndList]) :- true
| EndList=[_|NewEndList], buffConsumer(List\NewEndList).

This program uses the Prolog notation of an underscore to denote an anonymous
variable; repeated anonymous variables are taken to be distinct. This buffer program
uses the familiar Prolog technique of a difference list [Colmerauer, 1992]. A differ-
ence list is just a manifestation of an accumulator. The difference list, denoted by an
infix functor, \, at the consumer end acts as an N slot buffer. The equality thread in
the initial thread invocation initializes N to four. The consumer maintains the length
of the buffer by producing a new slot for every message consumed. Again garbage
collection and slot reuse could be compiled into the code for the consumer.

For larger buffers, an auxiliary thread may be used to generate the slots:

:- genBuffer(25,Stream,EndStream),
buffConsumer(Stream\EndStream),
dataDrivenProducer(Stream).

genBuffer(N, Stream, EndStream) :- N>0, N1:=N-1
| Stream=[_|TailStream],

genBuffer(N1,TailStream,EndStream).
genBuffer(0,Stream,EndStream) :- true

:- Stream=EndStream.
Using difference streams, the quicksort program used to introduce GDC in Chapter 3
may be succinctly refined:

//quicksort(UnsortedList, SortedList)
qsort(Unsorted,Sorted) :- qsort(Unsorted,Sorted,[]).
qsort([],Sorted,Tail) :- true | Sorted=Tail.
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qsort([Pivot|List],Sorted,Tail):-
| part(List,Pivot,Lesser,Greater),

qsort(Lesser,LSorted,[Pivot|GSorted]),
qsort(Greater,GSorted,Tail).

4.8 The Client-Server Paradigm

An important paradigm of distributed systems is the client-server. Many applications
occur in systems programming in which several threads share a common resource.

server([Transaction|MoreTransactions],Data) :- true
| task(Transaction,Data,NewData),

server(MoreTransactions,NewData).
Of the two arguments of server, the first is a stream of transactions from clients and
the second a handle to the data administered by the server. This data is to be manipu-
lated according to the form of transaction stipulated in the transaction message.

Alternative clauses to handle different transactions of the server show how abstract
data types (objects) can be naturally implemented in GDC. A bank account accumu-
lator provides a well-exercised example of an object.

accumulator([deposit(Amount)|More],Total) :- NewTotal:=Total+Amount
| accumulator(More,NewTotal).

accumulator([debit(Amount)|More],Total])
:- NewTotal:=Total-Amount, NewTotal>=0
| accumulator(More,NewTotal).

accumulator([balance(Amount)|More],Total)
:- Amount=total(Total), accumulator(More,Total).

For the sake of simplicity, the number of modes of access and functionality of the
transactions has been kept small. In particular, the second clause, unrealistically,
blocks indefinitely if the amount to be debited is greater than the balance. The third
clause for accumulator illustrates how the server replies to its clients. The client pro-
vides the server with a variable as a reply paid envelope.

A client using the account server facility might appear:

client(...,ToServer) :- ...
| ToServer=[balance(Amount)|NewToServer],

takeAction(Amount),
client(...,NewToServer).

takeAction(total(Total)) :- ....
Here the client program interrogates the account held by the server with the incom-
plete message balance(Amount). It spawns a child thread to act (earning some more
money or asking for credit) on the return information. Note the takeAction thread
will block until its argument is instantiated to total(Total).

Prolog primitives for reading from the keyboard and writing to the screen are side-
effected. The sequencing of goals in the body of a Prolog clause is crucial in getting
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the required external behavior. In GDC, input/output is implemented in a natural way
using primitive server threads. For example, a naive user defined transducer double:

:- stdIn(integers_in, InStream),
double(InStream, OutStream),
stdOut(integers_out, OutStream).

The primitive thread stdIn instantiates a list of carriage-return separated terms typed
at the keyboard. The input is closed by the constant term []. The primitive thread
stdOut prints on the screen space separated terms that appear as list items on its
argument. In a system where a user can invoke parallel threads, a multiwindowing
environment is natural. In such an environment, each invoked stdIn thread would
have its own input window (called “integers_in”  in the above case) and each
stdOut thread will have its own output window (called " integers_out"  in the
above example). Positioning the input/output primitives in the top-level thread invo-
cation saves them from cluttering and interfering with the semantics of the program
in lower levels. This is a modular approach to the problem of input/output in declara-
tive languages.

The lazily instantiated dynamic data structure of a list used in GDC server communi-
cation is ideal for input/output as it behaves like an infinite message buffer. Lists used
in this way correctly sequence the output to the windows though there is no sequen-
tial thread control construct in the language. As noted for functional programming,
streams seem to be a particularly clean way to deal with input/output and reactive
systems. What GDC offers over functional languages is better control over eagerness
and laziness. Higher order functions can be embedded in GDC programming as
shown by Reddy [1994].

Parker [1990] has elaborated the relevance of streams to interactive data analysis.
Each client of a server could be allocated its own stream for communicating with a
resource. More usually, it is convenient (particularly with input/output) to determine
or change at runtime the number of threads communicating with the server. Although
streams can be implemented in functional languages, there is a problem when it
comes to merging streams fairly. It will not do to merge streams alternatively taking
one item from each. An uninstantiated stream will block a stream with data items on
it. Streams are true relations; there are many possible streams that are the fair merge
of two streams. In functional languages, a stream is usually given as a primitive. In
GDC a fair merge can be user defined:

//merge(Left_In_Stream,Right_In_Stream,Out_Stream)
merge([],InR,Out) :- true

| Out=InR.
merge(InL,[],Out) :- true

| Out=InL.
merge([Item|InL],InR,Out) :- true

| Out=[Item|NewOut], merge(InR,InL,NewOut).
merge(InL,[Item|InR],Out) :- true

| Out=[Item|NewOut], merge(InL,InR,NewOut).

A merge thread can be used to merge messages from two clients to a server. If a
stream terminates the remaining, input is shorted with the output. In a message pass-
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ing system the order of arrival of messages is not necessarily the order in which they
were sent. However, with the merge thread, above, the relative order of terms pro-
duced by sources is preserved. To avoid starvation, when there are elements on the
two input streams of merge, the arguments are reversed in recursive thread calls.
With textual order of testing alternatives, changing the order of arguments causes the
list from which an element is taken to alternate and serves to effect fairness of input
arguments. A biased merge (without interchanging the arguments) gives a way of
programming priority.

Table 4.8.1 summarizes the stream threading interpretation of a logic program:

Table 4.8.1 The thread interpretation of Logic Programs

Concurrent Programming Logic Programming
network of threads denial with shared variables
thread negative literal
channel logic variable
message queue recursive data structure
thread state unshared variable
thread creation clause with more than one body goal
thread termination unit clause
long-lived thread recursion
indeterminacy multiple candidate clauses
(condition) synchronization clause guard

4.9 Self Balancing Merge

If more than two clients require access to a server, a tree of binary merges can be
employed. Generally, the number of clients varies dynamically and the tree can be-
come unbalanced giving rise to a linear merge tree. In the worst case, a message will
take n reductions to work its way through an n way merge. Saraswat [1987] gives a
self-balancing merge with logarithmic delay using splay trees [Sleator and Tarjan,
1985]. Balancing a binary tree requires information two nodes up in a tree. The
problem with binary merge trees above is that this information on the tree structure is
lost when the tree is splayed. The following implementation keeps trees of depth two
as data structures retaining the information necessary to balance it. If a stream termi-
nates, merge, as previously, shorts the input and output streams:

//merge(Left_In_Stream,Right_In_Stream,Out_Stream)
merge([],InR,Out) :- true

| Out=InR.
merge(InL,[],Out) :- true

| Out=InL.
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On receipt of a data item the merge collapses the node to a data structure:

merge([item(I)|InL],InR,Out) :- true
| Out=item(I,InR,InL).

merge(InL,[item(I)|InR],Out) :- true
| Out=item(I,InL,InR).

merge(item(I,InL,InR),InR1,Out) :- true
| Out=left(I,InL,InR,InR1).

merge(InL1,item(I,InL,InR),Out) :- true
| Out=right(I,InL1,InL,InR).

which records the shape of the tree. At depth two the data structure is splayed:

merge(left(I,InL,InR,InR1),InR2,Out) := true
| merge(InR1,InR2,InR3), merge(InR,InR3,InR4),

Out=item(I,InL,InR4).
merge(InL,left(I,InL1,InR,InR1),Out) :- true

| merge(InL,InL1,InR2), merge(InR,InR1,InL2),
Out=item(I,InL2,InR2).

merge(right(I,InL1,InL,InR,),InR1,Out) :- true
| merge(InL1,InL,InL2), merge(InR,InR1,InR2),

Out=item(I,InL2,InR2).
merge(InL,right(I,InL2,InL1,InR),Out) :- true

| merge(InL,InL2,InL3), merge(InL3,InL1,InL4),
Out=item(I,InL4,InR).

4.10 Synchronization

The transaction facilities of GDC can be used for many purposes; below is a client of
the bank balance server that sends a pair of abstract datatype transactions to double
the current account total:

client(..., ToServer) :- . . .
| ToServer=[balance(Amount),add(Amount)|TailToServer],

client(...,TailToServer).
Underlying the doubling operation is some sophisticated synchronization: the two
messages are both sent with the same uninstantiated argument. Once the server has
received the first transaction, it may receive the second before the reply to the first
has been instantiated. This is legitimate because the condition synchronization of the
arithmetic primitives ensures that Amount will not be added to the balance until it is
ground. The use of GDC clearly allows the programmer to express higher levels of
abstraction without having explicitly to code the synchronization.

This example raises the specter of atomic transactions. If the streams from the above
client and any other clients (joint accounts) are merged as above, there is the possi-
bility that another transaction, say a withdrawal, could sneak (God forbid) between
the two parts of the double transaction. In such a situation, if the amount to be debited
is greater than the current balance the transaction will deadlock. Whereas, if the
amount to be debited was less than twice the total and the double transaction had
taken effect atomically, it could have paid out the requested amount. This is a varia-
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tion on the "lost update" problem. A general approach to the problem is the provision
of an atomic transaction protocol for the server. Transactions that must be threaded
atomically are bundled together into a single compound transaction:

client(...,ToServer) :-...
| ToServer=[[balance(Amount),add(Amount)]|NewToServer],

client(...,NewToServer).
which is unbundled by an additional server clause:

accumulator([[X|Y]|Rest],Total) :- true
| concatenate([X|Y],Rest,Stream),

accumulator(Stream,Total).
The contrast between the alternatives of merging and concatenating streams can be
important for input/output. As with Prolog, difference lists can be used to produce the
effect of concatenation in constant time.

A set of threads that require exclusive access to a server can be connected through a
fair merge to a mutual exclusion thread:

mutex(free,[do(Job)|In],Out) :-
| Out=[do(Job,Free)|NewOut], mutex(Free,In,NewOut).

Clients send transaction messages to mutex and wait for access to be granted. Mes-
sages are only forwarded to the server if it is free:

server([do(Job,Free)|Trans]) :- true
| task(Job,Free), server(Trans).

The task thread binds the variable Free to free when it terminates, thus only allow-
ing one transaction to enter the server at a time.

In procedural languages, remote procedure calls are often used to implement servers.
With a remote procedure call, an answer is returned to a client only after the remote
call completes. In GDC developed so far, there is no explicit sequencing and the
mutual exclusion above does not achieve what is required. If the task were just a
reply to the client:

task(Job,Free) :- true
| Job=done, Free=free.

Free may be assigned to free before Job is assigned to done. This requirement for
sequencing may be generalized as a continuation. Continuations are used in denota-
tional semantics [Strachey and Wadsworth, 1974; Milne and Strachey, 1976] to de-
scribe control mechanisms. They have their origins in the tail functions of Ma-
zurkiewicz [1971]. Continuations are used in the compilation of Prolog programs to
binary metaclauses [Tarau and Boyer, 1990]. In this scheme an extra argument, the
continuation, is added to each goal and is used to represent a following computation.
The following program and scenario illustrates this:

q(X,Cont):- true | Cont.
r(X,Cont):- true | Cont.
s(X):- true | true.
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:- q(a,r(b,s(c))).
:- r(b,s(c)).
:- s(c).
:- true

Here Cont is a metavariable that ranges over goals. As equality is a primitive, a new
equality primitive with an extra argument is necessary. The primitive eq(A,B,Cont)
assigns (unifies) A to B and continues with Cont. By nesting continuations, the se-
quencing of variable bindings can be obtained: eq(A,B,eq(C,D,Cont)). With this
primitive, the appropriate form of the task clause becomes:

task(Job,Free) :- true
| eq(Job,done, Free=free).

The introduction of this new primitive, allows remote procedure call to be pro-
grammed much more simply:

server([do(Job,Free)|Rest]) :- true
| eq(Job,done,server(Rest)).

avoiding the mutual exclusion protocol above. The use of metapredicates goes out-
side first order logic but it is encompassed by Elementary Formal Systems [Smullyan,
1956].

4. 11 Readers and Writers

Readers and writers [Courtois et al., 1971] is a classic synchronization problem. Two
kinds of accesses, readers and writers, are allowed to a server. Writers modify the
state of the server and are allowed exclusive access. Readers do not modify the server
and have nonexclusive access. If the state of the server is not mutable, this is not a
problem in GDC:

server([read(Query)|Trans],Data) :- true
| read(Query,State), server(Trans,Data).

server([write(Update,Free)|Trans],Data) :- true
| write(Update,Data,NewData), server(Trans,NewData).

However, if the server is external and has a mutable state a combination of merge and
mutual exclusion can be used to solve the problem. Reader and writer requests are
segregated to give priority to writers:

//dispatch(In_Stream,Readers_Out,Writers_Out)
dispatch([read(Query)|In],ROut,WOut) :- true

| ROut=[read(Query)|NewROut], dispatch(In,NewROut,WOut).
dispatch([write(Update)|In],ROut,WOut) :- true

| WOut=[write(Update)|NewWOut], dispatch(In,ROut,NewWOut).

These two streams are fed into a mutex, which gives exclusive passage to writers:

//mutex(Free, Readrs_In, Writers_In, Out)
mutex(free,Rin,[write(Update)|Win],Out) :- true

| Out=[write(Update,Free)|NewOut],
mutex(Free,Rin,Win,NewOut).
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mutex(free,[read(Query)|Rin],Win,Out) :- true
| Out=[read(Query)|NewOut], mutex(free,Rin,Win,NewOut).

mutex blocks the entry of further reader and writer requests until the write request
just entered has signaled completion. Priority is given to writers by placing this clause
first. The server spawns concurrent readers chaining them together in order to detect
termination.

server([read(Query)|Trans],Head,Tail) :- true
| read(Query,Tail1=Tail),

server(Trans,Head,Tail1).
server([write(Update,Free)|Trans],Head,Tail) :- true

| Tail=done, wait(Head,Update,Free,Trans).

A writer sets Tail to done and waits for all the readers to complete. The second ar-
gument of reader is a continuation. When a reader completes, it shorts two variables.
When all the readers have finished the chain connecting all the readers is shorted and
Head is bound to done. Takeuchi [1983] invented this technique of ascertaining
distributed termination. The shorting of this circuit activates the writer, which then
has exclusive access:

wait(done,Update,Free,Trans) :- true
| write(Update,Free,Trans), server(Trans,Head,Tail).

When write terminates it binds its second argument to free allowing more read and
write requests to enter the server. Using continuation, for the writer, the mutual ex-
clusion protocol can be avoided altogether:

server([write(Update)|Win],Rin,Head,Tail) :- true
| wait(Head,write(Update,server(Win,Rin,NewHead,Tail))).

server(Win,[read(Query)|Rin],Head,Tail) :- true
| read(Query,Tail1=Tail), server(Win,Rin,Head,Tail1).

4.12 The Dining Philosophers

At first sight, the problem of the dining philosophers [Dijkstra, 1971] appears to have
greater entertainment value than practical importance. In fact, it provides a bench-
mark of the expressive power of new primitives of concurrent programming. It stands
as a challenge to proposers of concurrent programming languages. Attempts to de-
velop a solution reveal many of the difficulties of concurrent programming [Gingras,
1990]. Many nonsolutions have been proffered, e.g., [Tanenbaum, 1987, Shapiro
1989, Carriero and Gelerntner, 1989].

The problem is set in a Buddhist monastery of a contemplative order of five monks.
Each monk is a philosopher who would be content to engage solely in deep thought if
it were not occasionally necessary to acquiesce to the worldly desire for sustenance;
the life of a philosopher is an endless round of eating and thinking (a sort of US Na-
tional Security Council). Each philosopher behaves independently of his brothers.
Thus, the activities of the inmates of the monastery are, in general, asynchronous.

A philosopher wishing to eat enters the refectory, takes a seat, eats and then returns to
his cell. The communal dining arrangements are shown in Figure 4.12.1.
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Fig. 4.12.1 The Refectory Seating Arrangements

Five bowls and five chopsticks are arranged alternately around a circular table. Each
philosopher has his own place at the table. In the center of the table is a large bowl of
rice that is continually replenished. To eat rice requires two chopsticks. (In the origi-
nal description of the problem, the food in the bowl was spaghetti and the eating
implement was a fork. In the authors’ experience, eating spaghetti with one fork can
be accomplished but eating rice requires at least two chopsticks.) A philosopher may
use only those two chopsticks that are either side of his bowl. A chopstick can only
be used by one philosopher at a time.

The following scenarios in the monastery illustrate three classic difficulties encoun-
tered with synchronization: mutual exclusion, deadlock and starvation. Clearly, while
one philosopher is using a chopstick to eat it cannot be used by another philosopher.
Thus, two philosophers are competing for each chopstick. This is an example of the
need for mutual exclusion; no two philosophers may use the same chopstick simulta-
neously.

A philosopher can take one chopstick (thus preventing his neighbor from using it)
while waiting for a second chopstick to become available. When a philosopher gets
possession of a chopstick he can retain it until he has finished eating. Given perfect
synchronization (the philosophers have pondered the vexed question of the suitability
of synchronized swimming for inclusion in the Olympic Games) a scenario could
occur in which each philosopher simultaneously takes the chopstick on his left. All
philosophers are then waiting for the chopstick on their right and no philosopher
(typically) is prepared to give up the chopstick they already hold. (Philosophers and
academics are not generally noted for their social graces.) This is an example of
deadlock: all philosophers die waiting for a situation that will never occur, their
neighbor to give up the chopstick on their right.

Deadlock is a situation in which through obduracy all the philosophers starve to
death. A more sinister scenario can occur in which two philosophers conspire to
starve their mutual neighbor. Suppose, to avoid the above deadlock situation the
philosophers agree (détente) that no one will lay claim to a chopstick unless claim can
be made to both required chopsticks simultaneously. A scenario can occur in which
philosophers 0 and 2 (the philosophers have also considered the advantages of
modulo numbering systems) eat alternately. This prevents philosopher 1 from eating



130 Chapter 4

since when philosopher 0 is eating philosopher 1’s chopstick on the left-hand side is
occupied and when philosopher 2 is eating, philosopher 1’s chopstick on the right-
hand side is in use. Again perfect synchronization between philosophers 0 and 2 will
ensure that the two chopsticks that philosopher 1 requires to eat will never be avail-
able at the same time. This is an example of starvation or fairness; philosophers 0 and
2 conspire in the demise of philosopher 1.

Fig. 4.12.2 Another day in the life of a monastery1

These difficulties are illustrated by the following attempted GDC nonsolution to the
problem:

:- phil(Left0,Right0), chopstick(free,Right0,Left1),
phil(Left1,Right1), chopstick(free,Right1,Left2),
phil(Left2,Right2), chopstick(free,Right2,Left3),
phil(Left3,Right3), chopstick(free,Right3,Left4),
phil(Left4,Right4), chopstick(free,Right4,Left0).

phil([FreeL|Left],[FreeR|Right]) :- true
| FreeL=free, FreeR=free, phil(Left,Right).

In this simulation, a philosopher eats when he has both chopsticks as indicated by the
list pattern in each argument. After eating, a philosopher releases both chopsticks and
is immediately ready to eat again (these philosophers do no thinking):

chopstick(free,Left,Right) :-
| Left=[Free|Left1], chopstick(Free,Right,Left1).

                                                          
1 Inspired by Holt [1983].
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This is an example of a chain of demand driven producers and data driven consumer
(Section 4.7). What is significant is that the chain is cyclic.

A chopstick can be in a state free or in use. The chopstick thread behaves as a com-
bined mutex thread and a fair merge of the streams from its two philosopher neigh-
bors. As described, this can lead to deadlock when a chopstick is offered simultane-
ously to all the philosophers on the left, say, of the chopsticks. This symmetry can be
broken (credited to Toscani in [Holt, 1983]) by making alternate chopsticks initially
prefer a philosopher different from its neighbor. This is achieved by changing the
arguments around in one of the chopstick threads in the initial goal:

:- phil(Left0,Right0), chopstick(free,Right0,Left1),
phil(Left1,Right1), chopstick(free,Left2,Right1),
phil(Left2,Right2), chopstick(free,Right2,Left3),
phil(Left3,Right3), chopstick(free,Left4,Right3),
phil(Left4,Right4), chopstick(free,Right4,Left0).

For three philosophers, they take turns in eating as indicated Figure 4.12.3.

Fig. 4.12.3 Three philosophers taking turns

The circles represent philosophers seated at the table. The thin arrowed lines repre-
sent chopsticks offered. The philosopher with two chopstick offers is eating. The
thick arrowed line represents three goal reductions: one philosopher and two chop-
sticks.

While this solution provides mutual exclusion, deadlock and starvation avoidance it is
not maximally parallel. When philosophers think for arbitrary amounts of time sce-
narios can arise when there are philosophers ready to eat and chopsticks available but
they are offered to thinking philosophers. To obtain maximal parallelism requires
more complex solutions [Ringwood, 1986; Gingras, 1990].
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4.13 The Brock–Ackerman Anomaly

There is a problem with indeterministic dataflow languages in that functional seman-
tics (input-output relation) is not compositional [Keller, 1977; Kosinski, 1978]. The
Brock-Ackerman [Brock and Ackerman, 1981] counterexample in GDC is essen-
tially:

first2 (0,[A|In],Out) :- true
| Out=[A|Out1], first (In,Out1).

first2 (1,[A,B|_],Out) :- true
| Out=[A,B].

first ([A|_],Out):- true
| Out=[A].

dup ([A|In],Out) :- true
| Out=[A,A|Out1], dup (In,Out1).

ba(N,Ix,Iy,Out) :- true
| dup (Ix,Ox), dup (Iy,Oy), merge (Ox,Oy,Oz), first2 (N,Oz,Out).

The clause for ba is usefully illustrated in Figure 4.13.1.

ba

dup

dup

merge first2

Ix

Iy

N

Out

Fig. 4.13.1 Brock–Ackerman clause

where merge is the simple nonbalancing merge given previously. The success set of
a goal is the set of literals with arguments with their final bindings after the descen-
dants of a goal successfully terminate. In logic programming, such a success set rec-
ords the input-output semantics of a goal. The input-output semantics of the goal ba
is independent of its first argument.

{ba(_,[X|_],_,[X,X]), ba(_,_,[Y|_],[Y,Y]),
ba(_,[X|_],[Y|_],[X,Y]), ba(_,[X|_],[Y|_],[Y,X])}

Consider now the feedback loop:

feedback(N,Out) :- true | ba(N,[5],Mid,Out), mapPlus1(Out,Mid)
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ba

mapPlus1

N

Out[5]

Fig. 4.13.2 Feedback loop

where:

mapPlus1([[A|In],Out) :- A1:=A+1
| Out=[A1|Out1].

The input-output semantics of the composition feedback of ba and mapPlus1 is
dependent on its first argument:

{feedback(0,[5,5]),feedback(0,[5,6]),feedback(1,[5,5])}

Thus, while the input and output semantics of ba(0,_,_) and ba(1,_,_) are indistin-
guishable, they can be distinguished in a composition with a feedback loop.

4.14 Conditional Semantics

The state of a GDC computation can be described by a triple <R,B,I> of multisets of
reducible, blocked and irreducible goals, where the terminology will be explained. In
the initial state, R, B and I are a partition of the goals in the initial network invoca-
tion:

← a1, a2,...an.

Excluding for the moment the equality primitive threads, the reducible set R consists
of those threads that satisfy the guard of some clause. That is, for each nonprimitive
(equality and its continuation variant are the only primitives) thread ai in R there is
an instance of some clause:

h ← c1, c2,... cp ← b1, b2,... bm.

in the program for which ai and h are syntactically identical and the constraint
c1,c2,...cp is satisfiable. The blocked set B contains those threads ai that are not

reducible but have a reducible instance, ai’. These threads are blocked waiting for
instantiations. All other nonequality threads are members of the irreducible set, I. For
them, there is no instance of the thread and clause of the program for which the guard
is satisfiable.
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There are no equality primitive threads allowed in B. If ai is an equality primitive of
the form f(t1,... tk)=f(t1’,...tk’), k nonzero, then it is reducible and a member of R. A
computation step is one of the following:

• For a nonequality thread ai in R and a least instance
h ← c1, c2,... cp ← b1, b2,... bm.

of some clause in the program for which ai and h are syntactically identical, ai is
removed from R and the instance of the behavior of the clause, b1, b2,... bm, is
partitioned appropriately between the subsets R, B and I.

• An equality primitive f(t1,... tk)=g(t1’,...tk’) is transferred to B. An equality
primitive f(t1,... tk)=f(t1’,...tk’) R is removed and the network of primitive
equality threads t1=t1’,...tk=tk’ are appropriately partitioned between R and I.
Thus, in GDC the equality thread is a unification thread that reduces implicitly
and concurrently.

• Equality primitives of the form X=t or t=X in R are transferred to I if there is no
occurrence of the variable X in other threads. If there are other occurrences of X
in the sets R and B, they substituted by t. This is also accompanied by a redis-
tribution of those nonequality threads from B to R, which because of the substi-
tution have become reducible.

The denotation of each GDC thread is a logical atom. Primitive constraints can be
thought of as semantic attachments in the sense of Weyrauch [1980]. The primitive
equality thread, which implements syntactic equality also, can be thought of as a
semantic attachment. In the same way, the primitive input/output threads are semantic
attachments. Each clause denotes a first order, universally quantified, logic formula.
Each step of the computation denotes a deduction. The deduction steps are complex
of the like of paramodulation. Computation steps can be described as guarded com-
plex deductions by analogy with Dijkstra’s guarded commands.

The denotation of the initial thread network is given by abduction. Given a theory T
expressed by logical formulae and a possible conclusion C, an abductive explanation
of C is a set of sentences D such that T, D |- C. Using the deduction theorem, this can
be expressed as T |- C ← D. The initial goal:

← a1, a2,... an.

is the initial abductive answer:

a1, a2,..an ← a1, a2,... an.

and resolvents form a denotation of subsequent program states:

a1, a2,...an ← R ← B ← I.

The reduction scenarios depicted in previous sections denote derivations. A program
is thus denoted by the set of possible derivations. As such, GDC programs are ame-
nable to formal reasoning and program transformation. More precisely, GDC pro-
grams are easy to reason about and transform because variables may be freely re-
placed by their values (single assignment).
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4.15 Open Worlds and Abduction

A computation terminates when R is empty, but unlike Prolog, a GDC computation
may never terminate. (Abductive answer semantics for GDC programs were first
introduced to provide a semantics for perpetual threads in [Ringwood, 1987].) Unlike
Prolog, with abductive answer semantics there is no concept of goal failure. If at any
stage of the computation the irreducible set I contains an equality of, say, the form
jehovah=allah a Prolog computation would have been deemed to have failed. In
GDC the conclusion to be drawn is that jehovah and allah are different names for
the same entity, that is, aliases. The equalities of the irreducible set I establish a con-
gruence relation on the Herbrand base.

The term reducible equality is used in the sense of Herbrand’s (syntactic) equality
axioms over a universally quantified term algebra. If at any stage of the computation I
contains an equality of the form X = t, where X is a variable and t is a term that con-
tains X and t is not equal to X, the usual logic program would have been deemed to
have failed. (This is not so for Prolog where the occur check is, usually, not imple-
mented.) As some threads are deliberately nonterminating, it is more appropriate to
consider rational rather than finite terms [Lalement, 1993].

It will generally be the case that constraints in I can be further reduced by additional
equality axioms. For example, the constraints f(f(f(f(f(a)))))=a and f(f(f(a)))=b could
be further reduced to f(f(b))=a, by substituting the second constraint in the first.
There exist fast decision procedures for determining the congruence closure of quan-
tifier free equations, e.g., [Nelson and Oppen, 1980]. These could be provided as a
user defined extension of the equality primitive, but this idea will not be pursued
here.

If at any stage of the computation the irreducible multiset of threads, I, contains
predicates other than equalities, the corresponding Prolog program would have failed.
The irreducible user defined goals are not assumed to be false, as is the case with
negation as failure, but form part of the conditional answer. This has been called the
Open-World Assumption [Ringwood, 1987] and is a desirable semantics where re-
covery from hardware failure is a promised attribute of distributed systems [Bal et al.,
1989].

An additional control mechanism can be added to prevent nonequality threads be-
coming members of the irreducible set. This is the otherwise constraint as introduced
in the previous chapter:

thread(State,[Message|InStream],...,OutStream)
:- <constraint(State,Message)>
| computeStateResponse(State,Message,NewState,Response),

OutStream=[Response|TailOutStream],
thread(NewState,InStream,...,TailOutStream).

thread(State,InSt,...,OutSt) :- otherwise
| exceptionHandler(State,InSt,NewState,TailInSt,Response),

OutSt=[Response|TailOutSt].
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The otherwise clause is only used for thread reduction if all other clause guards for
the thread are unsatisfiable. That is, were it not for the exception clause the thread
would be irreducible. A thread that has an otherwise clause can never be a member of
the irreducible set, I, but it can be a member of the blocked multiset B. A situation in
which this might be needed is when the thread receives a message whose type it is not
programmed to expect. Delegating a message is a technique of object-oriented pro-
gramming. The guard of the otherwise clause is, in effect, the negation of the con-
junction of the guards of all the other clauses describing the possible thread behav-
iors. Otherwise negation does not have the problems of Negation as Failure. This is
because all the guard constraints are decidable primitives so the alternatives are ex-
haustive. Guard constraints only test the input, they do not cause any bindings to the
call variables.

If, at a stage of the computation the multiset of reducible threads, R, is empty, there
may still be threads that are not irreducible yet have instances that are reducible.
These threads will be in B. Such a state is called deadlock termination; the threads in
the multiset B are waiting for conditions that will never hold. This predicament may
occur because of cycles in the dataflow [Burt and Ringwood, 1988] or because of
incomplete guards or because a node of the distributed system fails. Another control
mechanism may be introduced which ensures that threads do not remain indefinitely
in B. This is the after guard that is illustrated as follows:

thread(State,[Message|InStream],...,OutStream)
:- <constraint(State,Message)>
| computeStateResponse(State,Message,NewState,Response),

OutStream=[Response|TailOutStream],
thread(NewState,InStream,...,TailOutStream)

thread(State,InSt,...,OutSt) :- after(5)
| timeOutResponse(State,InSt,NewState,TailInSt,Response),

OutSt=[Response|TailOutSt],
thread(NewState,TailInSt,...,TailOutSt).

A thread with an after clause will remain in a blocked state for a maximum time indi-
cated by the parameter of the primitive after constraint (a time-out). The timer starts
the first occasion the thread is scheduled. If at the end of the time-out period, none of
the guards of the other clauses are satisfiable, the behavior of the time-out clause will
be used to reduce the thread. The time-out clause will most naturally be used in con-
junction with priority scheduling.

The time-out guard may be compared with the Occam delay guards. As with Occam,
the parameter of after can be dynamic and passed as a parameter by the call:

thread({State,N},InSt,...,OutSt) :- after(N)
| timeOutResponse(State,InSt,NewState,TailInSt,Response),

OutSt=[Response|TailOutSt],
thread(NewState,TailInSt,...,TailOutSt).
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4.16 Implementation Issues

For the implementation of GDC, a functor of the form f(X1,...XN) is represented as
a tuple or array {f,X1,...XN}; that is a contiguous block of N+1 references in mem-
ory.  Access to the elements of the array so far has been by pattern matching but for
large arrays this becomes impractical. For such large arrays three primitive con-
straints are provided to effect indexed access. (Proposals to incorporate arrays into
logic programming have been around for some time [Eriksson and Raynes, 1984].
The constraint array(FA,NA,A) causes a thread to block until NA is instantiated to a
natural number. As with the arithmetic constraint, is, the variable A must not be
contained in the head of a clause. When this condition is satisfied the variable A is
instantiated to an array {FA,A1,...AN}.

Dual to the array primitive is the constraint functor(A,FA,NA) which causes a
thread to block until A is instantiated to a nonvariable term. When this holds, FA is
instantiated to the name (functor) of the array (term) and NA to the arity. This primi-
tive is restricted in a similar way to the array primitive and expression evaluation
primitive, in that FA and NA must be variables that are not contained in the head of
the clause. If A is a constant (functor of arity 0) then FA is bound to the same con-
stant and NA is bound to 0.

The final primitive of the trio arg(A,N,AN), provides indexed access to the elements
of an array without pattern matching. The argument A is the array and the argument
N is the index of the array element being sought. Both these variables must be bound
if the thread is not to block. When this condition is satisfied, the arg primitive binds
the variable AN to the N-th element of the array A. Like the constraints array and
functor, arg is restricted in a similar way to the expression evaluation primitive, is, in
that AN is not allowed to be a variable in the head of the clause.

The cost of representing arrays in this way is the need to copy nearly all the array to
update a single element. If any other thread does not require the old element value it
can be garbage collected and its storage reused by the new. This will require the
somewhat sophisticated program analysis envisaged in Kemp and Ringwood [1990]
if it is to compete with the efficiency of mutable arrays.

With the above primitive array constraints, the proposed attachment semantics of
equality is almost implementable in GDC:

X=Y :- functor(X,FX,NX), functor(Y,FY,NY), FX=FY, NX=NY
| equalArgs(X,Y,NX)

X=Y :- testCommitAndSet(X,Y) | true.

equalArgs(X,Y,0) :- true | true.
equalArgs(X,Y,N) :- /(N=<0), arg(N,X,XN), arg(N,Y,YN) & N1:=N-1

| XN=YN, equalArgs(X,Y,N1).

The symbol / negates a constraint. The constraint, /(N=<0), suspends until N is in-
stantiated to something other than 0. The unexplained testCommitAndSet primitive
in the second clause for the equality thread is a manifestation of the race condition
associated with shared variables noted previously. If such a primitive was to be pro-
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vided for programmers it would correspond to an atomic test-commit-and-set action.
It tests to see whether the first argument is a variable and if so commits the clause and
instantiates the first argument with the second argument as an all-or-nothing action.
Burt and Ringwood [1988] first introduced the idea of this primitive. It violates a
previous rule that guards cannot instantiate variables in the call. This condition has to
be modified to allow instantiation of a thread variable only as part of an atomic
guard-variable test, clause commit and variable instantiation. (It does not conflict
with the semantics where the guard is assumed atomic.)

In a distributed implementation, the way that the atomic test-commit-and-set action is
achieved is as follows. Each yet unbound variable, X, occurs only once in the dis-
tributed system, at the node where it was first created. All other references to it are
indirections. An equality thread of the form X=t has to migrate to the node where the
variable X is stored to bind it.

If the constraints provided by the system are insufficient or inappropriate, new ones
can be user defined in a lower level language and linked into the system. Primitive
threads can also be defined by the user as required and added to the system. In this
respect GDC is like ISWIM [Landin, 1966], in that it is really a family of languages,
the individuals being determined by the set of guard primitives and thread primitives
provided as semantic attachments.
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Chapter 3

Metamorphosis

Human beings do not live in the objective world alone, nor alone in
the world of social activity as ordinarily understood, but are very
much at the mercy of a particular language which has become the
medium of expression for their society. It is quite an illusion to
imagine that one adjusts to reality essentially without the use of
language and that language is merely an incidental means of solv-
ing specific problems of communication or reflection. The fact of
the matter is that the ’real world’ is to a large extent unconsciously
built upon the language habits of the group ... We see and hear and
otherwise experience very largely as we do because the language
habits of our community predispose certain choices of interpreta-
tion – Edward Sapir

[Whorf, 1956]

In the Precisionist Movement (Section 1.10), Lisp proved to be the foundation of
commercially successful Xerox and Symbolics workstations [Moon, 1987]. The
FGCS decision to build Prolog multiprocessor workstations appeared, to some, a
deliberate policy to be different from the US but this was not the whole story. The
principal application for the project was Japanese natural language processing. Their
language isolates the Japanese and automatic translation would be a major benefit in
global commerce. Prolog designed specifically for the needs of natural language
processing seemed a good choice for the Fifth Generation.

The bandwagon of Logic Programming caused by the FGCS choice was extensively
criticized. Some doubted Prolog was up to the job:

There is a small class of problems for which Prolog works great
(sic) and you can do beautiful demonstrations on these problems.
But, when you have to deal with time-dependent behavior like an
operating system, you get away from the nice qualities of Prolog,
you have to use the ugly side effect features of input and output and
you lose any advantage. For commercial users of a language it is
such large operating system-type software that they most need to
program. Will they want an interpreted language that can't usefully
be used on most problems?

[Attributed to Winograd, The Guardian, 23 May 1985]

An operating system is the critical software that controls a machine’s resources and
supervises running programs. Without a flexible and supportive operating system a
computer is virtually unusable. The symbiosis of the operating system and the hard-
ware is a critical factor that a machine architect has to consider. A machine designed
to support exclusively one particular language inherits the features and restrictions of
the language. Some languages encourage some forms of expression at the expense of
others. This has consequences for the operating system.
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The first kernel language developed by the FGCS program KL0, Kernel Language
Zero, was an extended version of Prolog. With feedback from what turned out to be
the core application, the operating system, KL0 evolved into KL1. This chapter de-
scribes the difficulties of Prolog in a pedagogical fashion. The language derived,
Guarded Definite Clauses (GDC) [Ringwood, 1987a] is not quite the Japanese suc-
cessor KL1 but is generic.

3.1 Apparent Scope for Parallelism

Parallelism is sought at the language level to exploit multiple processors and so pro-
duce increases in execution speed, response-time and throughput. The declarative
nature of a pure logic program guarantees that the result of a computation is inde-
pendent of the order in which subcomputations are executed. This suggested to many
that parallel evaluation would be immediate and straightforward. Closer examination
reveals that the sequentiality embodied in chronological backtracking and the cut are
crucial factors in Prolog’s success.

The classic naive quicksort Prolog program serves to illustrate the problems.

%quicksort(UnsortedList, SortedList)
qsort([],[]).
qsort([Item],[Item]).
qsort([Pivot,Item|List],Sorted) :-

part([Item|List],Pivot,Lesser,Greater),
qsort(Lesser,LSorted),
qsort(Greater,GSorted),
conc(LSorted,[Pivot|GSorted],Sorted).

%partition(List,Pivot,LesserList,GreaterList)
part([],Pivot,[],[]).
part([Item|List],Pivot,Lesser,[Item|Greater]) :-

Pivot=<Item,
part(List,Pivot,Lesser,Greater).

part([Item|List],Pivot,[Item|Lesser],Greater) :-
Item<Pivot,
part(List,Pivot,Lesser,Greater).

%concatenate(List1,List2,List1List2)
conc([],List,List).
conc([Item],List,[Item|List]).
conc([Item1,Item2|List1],List2,[Item1,Item2|Lists]) :-

conc(List1,List2,Lists).
The more sophisticated difference list version of quicksort is not used at this stage
because the naive form better illustrates the points to be made. The % character indi-
cates that what follows on the same line is a comment. The logical reading of the
program is that the second argument of qsort is an ordered list, ordered by the rela-
tion =<, with precisely the same elements as the list in the first argument. For dis-
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tinction, predicate names are printed in boldface. Lists are as usual in Prolog, de-
noted recursively, [Head|Tail], where Head is the first item of a list and Tail is the
remainder of the list. By convention, the constant [] represents the empty list.

Procedurally, Prolog tackles a goal such as :- qsort([2,1,3],Sorted) by searching for
matching clauses depth-first in textual order, backtracking to the most recent choice
point on failure. The computational effect of the sequencing of clause subgoals is that
the list to be sorted is first partitioned, the Lesser sublist is sorted, the Greater
sublist is sorted and finally the two sublists are concatenated. Naively, the computa-
tion appears ripe to take advantage of multiprocessor architectures. If there were
more than one processor, one could sort the Greater sublist and another could sort
the Lesser in parallel.

If at some stage in a parallel computation conc is called with an uninstantiated vari-
able as its first argument, it can resolve with the first or second clause of the relation.
This may prematurely conclude the list so that the length of the sorted list is less than
the list being sorted. This is illustrated by the following scenario where parallelism is
simulated by interleaving [Pnueli, 1986; Chandy and Misra, 1988].

:- qsort([2,1,3],Sorted), ans(Sorted).
:- part([1,3],2,Lesser,Greater), qsort(Lesser,LSorted),

qsort(Greater,GSorted), conc(LSorted,[2|GSorted],Sorted),
ans(Sorted)

:- part([1,3],2,Lesser,Greater), qsort(Lesser,[]),
qsort(Greater,GSorted), ans([2|GSorted]).

The ans goal is used to accumulate the answer in the same way as Green’s QA3
[1969]. The underline indicates the goal that is chosen to be resolved at each step. If
the second or third clause for conc had been used, the list could overrun so that the
length of the sorted list exceeds the length of the list being sorted. This premature
binding problem is a consequence of the eagerness of clause invocation in Prolog.
The previous sequential evaluation gave considerable control over of the flow of
bindings.

The premature binding problem arises because qsort and conc can resolve asyn-
chronously and they compete to instantiate the variable LSorted. Naively, it might be
thought that if there is no explicit sharing by concurrent goals, there is no premature
binding problem. That this is not the case is illustrated by the less complex example:

p(X,Y) :- q(X), r(Y).

Since q and r do not share variables, it might be supposed that they could be safely
executed in parallel, but the clause for p may be invoked with the goal :- p(Z,Z). The
reason the parallelism of the quicksort seemed promising is that the calling pattern of
qsort is controlled by the defining clause. The variables Lesser, LSorted, Greater
and GSorted only occur in the body of the clause and not in the head. If only called
from qsort there is no way that these body variables can be caused to share.

When unification is used for pattern matching and not for pattern generation, there is
genuine data independence in conjunctive goals. If in the previous example the call to
p is ground, such as :- p(a,b), the resolvent :- q(a), r(b) can be reduced in parallel.
(Variable-free sentences and terms are said to be ground or closed). The calls to q
and r are just tests that produce no bindings and so are independent. In general, only
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at runtime can independence of goals q and r be known. Compiletime analysis has
been proposed to reduce the considerable overhead of dynamic independence testing
[e.g., Delgado-Rannauro, 1992a].

3.2 Or-Parallelism

The problem with the above so-called and-parallelism is that shared variables are a
form of dependency that can lead to conflicts of interest. At second look, a more
promising task decomposition is or-parallelism. In depth-first evaluation, the alterna-
tive clauses for partition are tried in turn. Only if a clause fails is the next in textual
order considered. Since, semantically, alternative solutions to a goal are independent,
breadth-first search is a natural candidate for parallel execution. Each parallel branch
is a thread, an independent locus of control. The problems of the combinatorial ex-
plosion of breadth-first search were elaborated in Chapter 1. Consequently, or-
parallelism is usually only advocated when there are idle processors.

The terminology or-parallelism comes from AI search problems but as far as logic is
concerned, or-parallelism is perhaps a confusing misnomer since clauses are, if any-
thing, logically conjoined, not disjoined. This can be understood from Gentzen’s and
introduction rule on the left:

C1, C2 |- C

C1 ^ C2 |- C

The term or-parallelism is used here at the control metalevel. A more appropriate
name might be clause search parallelism. In this respect, the reader should not be
confused by the Prolog or-operator (denoted by a semicolon in Edinburgh syntax
[Bowen et al., 1981]) which is a metapredicate that exploits the nondeterministic
search of Prolog to simulate logical disjunction.

From a conceptual viewpoint, the explorations of the alternative branches of the
clause search tree are independent. From an implementation viewpoint, the alterna-
tive branches are highly dependent. Alternative clauses are invoked with the same
initial conditions. In the usual WAM implementation [Ait-Kaci, 1991], the initial
conditions are represented by a stack frame. A frame is associated with each instance
of a clause invoked during execution. The frame serves to record the parent clause,
the subsequent goal and the bindings of newly introduced variables. In general, alter-
native clauses lead to different variable bindings. The binding frame poses another
conflict situation for parallel evaluation. With depth-first search, because only one
branch of the search is explored at a time, at most one binding for each variable need
be stored. These bindings are recorded in a trail stack. On backtracking, the trail stack
is used to clear the binding frames of bindings caused by the previous clause choice.
For breadth-first search, an obvious possibility for avoiding contention is to duplicate
the binding frame for each clause; this is computationally expensive. More sophisti-
cated methods have been proposed but these are complex [e.g., Delgado-Rannauro,
1992b] and still have considerable overhead. This situation illustrates that while theo-
retical decomposition of the problem may superficially suggest independent subtasks,
the efficient implementation introduces hidden dependencies.
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3.3 The Prolog Phenomenon1

The prospect of adapting Prolog for parallel execution stems from the intuition that if
it takes n units of time for one agent to perform a task then n agents can perform the
task in one unit of time. Brooks [1975] satirically provides a counterexample:

If it takes one woman nine months to produce a baby then nine
women can produce a baby in one month.

This is substantiated by naive attempts to parallelize Prolog. Prolog’s success is inti-
mately related to its stack control structure. Adapting Warren’s implementation to
take advantage of parallel hardware is much more complex than had been predicted
by its advocates [e.g., Conery and Kibler, 1981].

Parker [1990] expressed concerns about Prolog's inflexible control mechanism for
knowledge based applications, such as the hypothetical financial trading system con-
sidered in Section 2.5. It might be expected that such applications would need to
access and import external knowledge incrementally from online information servers,
such as Reuters. This data comes over a network, but other sources could be external
devices, relational databases or, more simply, just files. Servers that handle input and
output expect client programs to manage file descriptors and cursors. Nevertheless,
Prolog, having declarative aspirations, encourages a style of programming that can
abstract away such detail. Prolog has an inability to observe the arguments of a goal
from outside a recursion without resorting to side effects. This means that in reading
data from a database the whole relation must be imported wholesale into memory
before it can be analyzed. For large databases Prolog requires large amounts of mem-
ory. Ideally, I/O processing programs must selectively read data items from multiple
streams, process these items and selectively write multiple output channels. A stream
is an incrementally constructed data structure. Streams are used in Unix for commu-
nication between processes and I/O devices. To handle streams requires an ability to
suspend processing and interleave input with the data transformation and output. The
consumer must wait for the producer. This is known as condition synchronization.
Parker [1990] proposes meta-interpretation to solve this database interface problem.
This solution suffers from busy waiting and the overhead of meta-interpretation. Busy
waiting describes continuous testing of a variable waiting for some value to appear.
Partial evaluation cannot be used to alleviate the problem of meta-interpretation be-
cause the input data is not known in advance.

Conway [1963] introduced a solution called coroutining as an improved way of exe-
cuting multipass compilers:

A coroutine is an autonomous program that communicates with
other coroutines as if they were input and output subroutines.

In a multipass compiler, coroutines interleave successive passes of the source that
incrementally transform a stream of input tokens into assembled code. The execution
of coroutines is demand scheduled:

                                                          
1 Title borrowed from McDermott [1980].
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When coroutines A and B are connected so that A sends items to B,
B runs for a while until it encounters a read command, which
means that it needs something from A. The control is then trans-
ferred to A until it writes, whereupon control is returned to B at the
point where it left off.

Conway noted that coroutines could be executed simultaneously if parallel hardware
were available. Simula and Modula both provide co-routines. Coroutining appeared
in IC-Prolog [Clark and McCabe, 1979] for a somewhat different reason. Some
Prolog primitives, such as arithmetic, are infinitely indeterministic. Edinburgh Prolog
requires certain arguments to be ground to make them deterministic (functional). If a
primitive is called with its arguments insufficiently instantiated, an exception is
raised. The normal Prolog computation selects the literals to resolve in the textual
order in which they appear in the body of a clause. Coroutining allows the computa-
tion rule to be changed so that such primitives are selected only when they are suffi-
ciently instantiated or if there is no other choice.

Coroutining was used in Prolog to delay the evaluation of negations until all argu-
ments are ground [Naish, 1985]. By their nature, definite clauses can only infer posi-
tive information. Negative atoms in goals were used by Absys [Foster and Elcock,
1969], Planner [Hewitt, 1969] and Prolog to extend the expressiveness of the lan-
guages through the nonmonotonic negation as failure. Negation as failure is a com-
putable approximation to Reiter’s [1978] closed world assumption. Negated goals that
fail to be proved with exhaustive search are deemed to have established the negation.
Negation as failure presents some control difficulties. It becomes unsound when the
search is incomplete as it is using depth-first search and cuts. Unsoundness is also
introduced by the existential quantification of variables in a goal. In practice, nega-
tions are usually placed towards the end of a Prolog goal so that they have a greater
chance of being bound by the time they are called. If negative goals are unbound
when called, an exception is raised. An exception is an undesirable state of the com-
putation from which recovery is not possible and the computation has to be aborted.
Even if coroutining is used to delay the evaluation of negative goals there are still
problems. For some programs, no goal ordering can be relied on to produce ground
negative goals. This situation is called floundering. Negation as failure is non-
monotonic and the semantics are not at all simple [e.g., Apt, 1994].  This detracts
somewhat from the declarative claims of logic programming.

Coroutining was also proposed for Prolog for metalevel control [Dincbas, 1980; Gal-
laire and Lassere, 1980]. Criticism of the eagerness of clause invocation was noted
for a predecessor of Prolog:



Metamorphosis 75

For some time we have been studying Planner and the uses to
which it has been put, hoping to learn just what modifications
would be desirable to the user community. These investigations
have led us to decide that the basic control structure of Planner is
wrong, though its success indicates that it contains many powerful
(and seductive) ideas.

[Sussman and McDermott, 1972]

Sussman and McDermott complain that the eagerness of rules that may be invoked by
Planner’s pattern matching suggests independent ways of solving the same problem.
Often, different clauses will duplicate solutions, fail with the same unacceptable vari-
able bindings or run out of space because of unbounded depth of search trees. Novice
programmers certainly find the duplication of solutions annoying and difficult to
understand.

According to Newell [1981], a program cannot be described as intelligent if it does
not make intelligent search. One might learn from mistakes by examining the as-
sumptions that lead to failure. Backtracking suffers from many maladies and many
refinements have been proposed. These can be classified as lookback and lookahead
schemes. Lookback schemes attempt to improve on the choice of backtrack point by
taking into account the causes of failure of previous branches. A failure to unify with
any clause provides negative constraints on the variables in the failing goal. In logic
programming, lookback is known as intelligent backtracking [Bruynooghe, 1991].
Intelligent backtracking has been a research topic for some time without leading to
any acceptable working systems. A comprehensive bibliography was given in [Wolf-
ram, 1986]. Lookahead schemes are concerned with restricting the choice of instan-
tiation of variables and dynamic search rearrangement. Lookahead schemes include
constraint satisfaction, as described in Chapter 1.

Constraint satisfaction and logic programming combine very naturally [Jaffar and
Maher, 1994]. As Herbrand proposed [1930], unification of a clause head and a goal
can be viewed as an equality constraint system. Constraint satisfaction was used in
the first logic programming language, Absys [Foster and Elcock, 1969]. In Absys, a
relation is defined by a bi-implication, known in logic programming as the Clark
Completion [Clark, 1978]. The concatenate relation above would appear as the defi-
nition:

conc(List1,List2,List1List2) ↔ (

List1=[] ∧ List1List2=List2)

∨ (List1=[Item] ∧ List1List2=[Item|List2])

∨ (List1=[Item1,Item2|List4] ∧ List1List2=[Item1,Item2|List3]

 ∧ conc(List4,List2,List3)
)

All variables are assumed to be universally quantified. This presentation emphasizes
the Absys designers’ motivation of removing all forms of control and direction from a
program. To provide a semantics for negation as failure, Clark [1978] used this form
of closure of a definite clause. In Absys, equality relations are treated as coroutines
and are reduced asynchronously. An equality predicate X = Y is only reduced if one
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of the arguments is nonvariable. If both are variables, the goal suspends. The design-
ers justified this by the symmetry of equality. By contrast in Prolog, recently intro-
duced variables are bound to ones introduced previously (lower down the stack).

An attempt to overcome criticism of Planner’s chronological backtracking was Con-
niver [Sussman and McDermott, 1972]. According to its developers, Conniver pro-
vides a more flexible form of control where arbitrary goals can suspend animation. A
suspended goal is poised to continue where it left off. This makes it necessary to
maintain a control tree, the leaves of which form a set of threads coperating to solve a
problem. Sussman and McDermott complain that the search and data manipulation
activities of Planner are too automatic. In Conniver, an active goal can relinquish
control not only by returning to its parent but also by passing control to a goal in a
suspended state (a coroutine). Two sorts of variables that act as producers and con-
sumers of variable bindings provide synchronization. Besides moving up and down
the hierarchical goal graph, flow of control may now also wander among the goals at
the tree tips by suspending and resuming execution. Sussman and McDermott [1972]
claim that backtracking search is of questionable use for applications in AI.

Programs that use exhaustive search are often the worst algorithms
for problem solving … The ubiquity of implicit search and the illu-
sion of power that a query gives the user merely by use of invisible
failure-driven loops encourage superficial analysis and poor pro-
gramming practice.

Conniver’s generalized control structure allows programmer control over failure and
backtracking. Variable bindings in one branch of the search tree are available to pro-
vide information to prune another. So that the speculation each clause indulges in
does not interfere with a goal for some alternative clause, each clause has to have its
own binding frame. This is the problem encountered with or-parallelism above; it
leads to a tree of binding contexts rather than a stack. The alternative variable bind-
ings produced by a clause are returned to a goal in the form of a list. All this makes
the complexity of Conniver much greater than the difficulty of controlling failure
driven loops. It never gained much of a following.

The trade-off between expressive power and implementation efficiency is at the heart
of many arguments about the relative merits of different languages. At the start of the
Fifth Generation initiative, The Handbook of Artificial Intelligence [Barr and Feigen-
baum, 1982] proposed four language features that were deemed to be particularly
important for AI applications:

• the ability to define data structures that are expressive and easy to handle;
• pattern directed procedure invocation;
• the existence of flexible control structures, in particular coroutining;
• an enhanced programming environment.

The earliest programming languages only permitted a programmer to process num-
bers first as scalars and then in arrays. A major contribution of the symbolic pro-
gramming languages was the introduction of lists (IPL) and then binary trees (Lisp).
The pattern directed procedure invocation advocated by Barr and Feigenbaum is
probably a reference to Planner and rule-based systems. The requirement for flexible
control structures is probably a reference to Conniver’s criticism of Planner. The
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reference to enhanced programming environment stems from the facilities provided
by Lisp and Smalltalk workstations.

3.4 Concurrency and Operating Systems

Concurrent programming encompasses nonhierarchical control such as coroutining,
threads and processes and parallelism.  A thread is a sequence of actions. Sometimes
the word process is used in place of thread but may be better reserved for the case
where an exclusive resource (address space) is associated with a thread. Concurrent
programs have characteristics that differentiate them from other kinds. Harel and
Pnueli [1985] drew the distinction between transformational and reactive programs.
Transformational programs begin with the input of data, transform the input, output
the result and terminate. This is the class of program most usually studied in comput-
ability theory. In contrast, reactive programs undergo continuous interaction with
their environment. Sometimes reactive programs are effectively perpetual (they do
not terminate). Operating systems, interactive graphical user interfaces with multiple
windows, distributed systems and event driven real-time systems are all examples of
reactive systems.

Earliest experience of concurrent systems was gained with operating systems. With
Lisp, McCarthy devised a language needed to express the algorithms of AI. However,
early versions of Lisp were inefficient and computing resources were scarce. While at
MIT, McCarthy and others invented time-sharing to alleviate the problem of scarce
resources. A number of graduate students formed the Digital Equipment Corporation,
DEC, to market timesharing minicomputers. With the advent of timesharing, the
emphasis of computing gradually changed from algorithms to systems. In the mid-
1960s, Dijkstra [1968a] and colleagues developed the first multiprogrammed operat-
ing system, THE, at the University of Eindoven. The name THE derives from the
name of the institution. The architecture of the operating system is hierarchical with a
kernel and layers of virtual machines implemented by processes.

An early influential paper Dijkstra [1965] drew attention to the problem of mutual
exclusion to resources shared between asynchronous processes. This was the first of
many synchronization problems that have become classics. The mutual exclusion
problem arises when testing and setting of shared resources is not atomic. Dijkstra
credits Dekker with a solution for two processes that assumes load and store opera-
tions to be atomic but requires no other hardware. Contemporary microprocessors
have at least one instruction that facilitates atomic test and set. Dijkstra extended
Dekker’s algorithm to any number of processes. Since then, numerous other versions
that simplify the algorithm or improve fairness have been devised. Because the mu-
tual exclusion problem is fundamental, there have been hundreds of papers and one
entire book [Raynal, 1986] on the topic. The premature binding problem, exposed
previously in trying to parallelize Prolog, is a manifestation of the mutual exclusion
problem. Dijkstra [1968b] introduced and gave solutions for two further classic syn-
chronization problems, the dining philosophers and the sleeping barber. Courtois et
al. [1971] proposed solutions to another classic problem of concurrency, the readers
and writers problem.
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In the late 1960s, a few operating system architects realized that organizing an oper-
ating system as a collection of processes communicating by passing messages would
avoid the mutual exclusion problem. This changed the problem of operating systems
from one of sharing resources to one of cordination of processes. Brinch-Hansen’s
[1970] multiprogramming nucleus for the Danish RC 40000 was an early proposal for
a message passing operating system. The similarity with biological systems is appar-
ent. Biological systems maintain control by confining functionality and their data in
self-contained cells. These cells act on each other by sending messages carried by
chemical messengers. The cell membrane protects its data, DNA, from inappropriate
processes. This analogy inspired Kay’s [1972, 1993] Flex language and subsequently
Smalltalk. Because it is more efficient to communicate using shared variables than
message passing, most operating systems still use shared variables for process com-
munication within a machine. Such operating systems, however, provide message-
passing primitives so that processes can communicate with other machines over a
network.

3.5 Concurrency and Distributed Systems

The process-message-passing concept developed in operating systems naturally lends
itself to distributed systems. A distributed computing system consists of multiple von
Neumann machines that coperate by sending messages over a communication net-
work. A distributed architecture where computers are physically close, communica-
tion is fast and reliable, is said to be closely coupled. An example is a Transputer
array. In contrast, systems with relatively unreliable communication between proces-
sors that are physically widely separated are loosely coupled. An example is a local
area network (LAN).

Loosely coupled distributed systems are now favored over other architectures such as
timesharing systems and shared memory multiprocessors for a number of reasons.
First, for critical applications such as fly-by-wire aircraft or control of nuclear power
installations, a single processor may not be reliable enough. Distributed systems are
potentially more reliable because they have a partial failure property. Failure of one
processor does not necessarily prevent the correct functioning of other processors.
Second, they are scalable: greater power can be achieved by adding more devices.
While increases in speed can be achieved with shared memory multiprocessors, such
architectures do not easily scale to a large number of processors. Finally, there are
applications where distribution is inherent such as sending electronic mail between
workstations. Some applications are naturally structured as collections of specialized
services. In control systems, it is natural to embody computation at the point of sens-
ing, to filter irrelevancies and compress data.

Processes in a single computer that require the same resources can potentially inter-
fere with one another. Control by mutual exclusion can lead to deadlock. Avoiding
deadlock becomes particularly difficult in distributed systems because information
about tasks and resources are distributed. In early operating systems, centralized
resource management proved a more effective form of control. In a distributed sys-
tem, any manager can become a bottleneck and centralized control is not fault toler-
ant to the failure of a manager. Having deputy managers take over when necessary
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can reduce this drawback. This has the overhead of having to keep the deputies in-
formed of the current state of the manager.

More decentralized regimes grant access to resources based on local information.
This reduces the overhead and bottlenecks, but might not prevent contention because
local views may be inconsistent. In this case, mechanisms must be available to detect
interference and recover from it. This may involve aborting and restarting some tasks.
This is only feasible where recovery is relatively inexpensive (small tasks) and infre-
quent compared with the cost of maintaining global views.

In distributed scheduling, tasks arrive over time at nodes that have particular resource
constraints: computation time, priorities and deadlines. Generally, nodes schedule
tasks to maximize some performance criteria, such as servicing high priority tasks
and meeting as many deadlines as possible. In a given time interval, some nodes may
have more high priority tasks to perform than others and migrating tasks between
nodes might improve the overall network performance. In decentralized control, local
processing and task migration are possible. A local scheduler that cannot meet sched-
uling criteria might contract another node with fewer demands on it to perform the
task. Distributed schedulers have borrowed techniques from distributed AI to do this
contracting out [Ramamritham and Stankovic, 1984; Stankovic et al., 1985].

Managing consistency is essentially the same as controlling access to shared re-
sources. Data could reside on a single node but this can become a bottleneck. Reli-
ability is reduced if the node fails. If data is replicated, changes to the data have to be
coordinated. If not, inconsistencies can be introduced. Cordination must either incur
the overhead of continually insuring against inconsistency or the overhead of cor-
recting the effects of inconsistencies. Nodes can modify local copies atomically and
simultaneously or make local changes and detect when inconsistency arises. In the
latter situation, nodes have to negotiate which of different views to converge on and
activities based on inconsistent views rescinded.

Elementary distributed operating systems provide print services and a file archiving
services. With resource sharing, the process model is refined to a client-server model.
Servers are processes that act as resource managers. Clients are processes that require
access to shared resources. The communication pattern is asymmetric. Clients initiate
requests to servers. Generally, servers can receive requests from any client. When a
request is received, a server queues the requests. Servers lie idle when the service
queue is empty. In Unix systems, the client-server model has been successfully ap-
plied to the provision of permanent storage with NFS (Network File System) and the
provision of a window interfaces in the X system. Client-server systems tend to have
a few servers with much functionality built into each one. A refinement of the client
server-model is the object model [Liskov and Zilles, 1975; Liskov et al., 1977]. An
object can act as both server and client and consequently have smaller functionality.
Any service an object cannot fulfil can be delegated to other objects.

Operating systems were initially concerned with independent tasks and the primary
design objective was the efficient use of resources. Cordination is necessary to avoid
contention and deadlock. Scheduling has to be controlled to meet performance re-
quirements. Control is required to ensure the integrity of distributed data. These con-
cerns of distributed systems are also concerns of distributed AI.
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3.6 Symbiosis Between Programming Language and System Engineering

The resource management systems that make up an operating system need to cooper-
ate to provide a virtual machine to a user. Attwood [1976] describes the enormous
difficulty in designing an operating or distributed system. Operating systems are
particularly difficult to construct and the advantage of using high-level languages for
programming them proved itself in the symbiosis between C and Unix. High-level
systems programming languages lead to significant reductions in coding effort, code
size and bugs. They also provide portability and relative ease of modification. Al-
though early versions of Unix were not multiprogramming, the operating system
rapidly evolved to a multi-user, timesharing system. Unix users could create tasks
consisting of two or more processes connected by pipes. A pipe is a one-way com-
munication channel, the ends of which can be inherited by child processes. This al-
lows two processes to communicate provided they have a common ancestor.  Micro-
kernel distributed operating systems like Mach [Baron et al., 1987], V [Cheriton,
1987] and Chorus [Rozier et al., 1987] are written mostly in C.

High-level languages like Prolog and Planner deliberately impose structure on the
problem-solving behavior of the user making the expression of certain problems more
natural and (hopefully) discouraging bad programming practice. They encapsulate
high-level problem-solving concepts that generally make some forms of reasoning
about programs simpler. Program design by stepwise refinement is a natural partner
of modular design and hierarchical control of stack-based procedure calling. The
drawback is that restriction on the allowed data structures, control structures and
primitives make some algorithms more difficult to write than others. To handle sys-
tem programming, a language needs to express dynamic process creation and termi-
nation, synchronization, communication and resource control.

In response to the growing costs of software development and maintenance of sys-
tems programs, the United States Department of Defense invited proposals for a new
language. The winning proposal was called Ada [Ichbiah et al., 1979] after Augusta
Ada Lovelace, daughter of the poet Byron. Lady Lovelace was a student of Jevons
and a collaborator of Babbage and often said to be the first programmer. The Ada
language extended Pascal (itself a derivative of Algol for teaching structured pro-
gramming) to include features to support concurrency and programming in the large.
Ada reflects the evident need to maintain very strict control over assignment in con-
current systems. Liskov et al. [1986] conclude that Ada’s combination of synchronous
communication and static process structure leads to complex solutions to common
problems. Clarke et al’s [1980] low opinion of procedure nesting in Ada (inherited
from Pascal) is encapsulated in the title of the paper: Nesting in Ada programs is for
the birds. Roberts et al. [1981] conclude that Ada does not meet the needs of real-
time programming for which it was intended. Hoare [1981] who was employed as a
consultant in the design of Ada gave a warning:

And so, the best of my advice to the originators of Ada has been ig-
nored. In this last resort, I appeal to you, representatives of the
programming profession of the United States, and citizens con-
cerned with the welfare of your own country and mankind: Do not
allow this language in its present state to be used in applications
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where reliability is critical, i.e., nuclear power stations, cruise mis-
siles, early warning systems, anti-ballistic missile defense systems.

Dijkstra [1972] and Brinch-Hansen [1972] proposed using the class structure of
Simula for controlling access to shared variables in a concurrent program. Simula has
control primitives, call, detach and resume which can be used to implement corouti-
nes. In coroutines, synchronization is hidden in the input and output commands but
the primitives of Simula allow other more obscure types of synchronization. The
resume command, in particular, behaves like a goto command but with a moving
target. Hoare [1974] describes solutions to the classic bounded buffer, interval timer
and disk head scheduler (elevator algorithm) using a specific language proposal
called monitors.

Smalltalk, inheritor of the Simula class structure, was further inspired by the biologi-
cal analogy. Smalltalk was designed to be more than a programming language. Like
the Fifth Generation, it was also a kernel language and used to implement computer
operating systems. Objects in Smalltalk were viewed as both persistent and dynamic.
Every object is always ready to receive and send messages and many objects can be
active simultaneously. In Smalltalk, a user program can obtain an answer from an
instance of a class by sending it a request but without knowing whether the informa-
tion is data or a procedure.  Kay [1973] exploited this in a distributed version of
Smalltalk:

Though Smalltalk’s structure allows the technique now known as
data abstraction to be easily (and more generally) employed, the
entire thrust of its design has been to supersede the idea of data
and procedures entirely and to replace these with the more gener-
ally useful notions of activity, communication and inheritance.

[Kay, 1972]

3.7 Event Driven Synchronization

According to Arvind and Ianucci [1987] the two main issues that must be addressed
by any successful exploitation of multiple processors are latency and synchronization.
Latency is the elapsed time between the issue of a data request and its corresponding
receipt. If data is situated on a nonlocal store, the access time is increased by transit
through the communication network. This is compounded because requests are
queued and not acted upon at once. The access time is typically orders of magnitude
longer than an instruction cycle. This is particularly the case for Risc processors.
Avoiding the processor idling while waiting for a response is vital. With synchroni-
zation, a process may wait for any one of a number of events and take different ac-
tions depending on the particular event. This is called or-synchronization by
Maekawa et al. [1987]. Processes may require access to several resources simultane-
ously; this they call and-synchronization. It is sometimes convenient to synchronize
processes using the absence of a condition instead of its presence. This is known as
not-synchronization.
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Petri’s nets [Petri, 1962] was the first theory of synchronization. It is a generalization
of the theory of automata studied in the 1950s [Shannon and McCarthy, 1956]. In
classical automata, an automaton can be in one of any number of different states. The
theory studies the nature and structure of transitions from one state to another. For
Petri nets, changes also occur through transitions. A transition is characterized by
preconditions, which must hold before it occurs and post-conditions, which must hold
after it occurs. The (global) state of a Petri net is a simultaneous holding of a number
of conditions. The nodes of the network represent the conditions. The literature on
Petri nets is vast [Reisig, 1985].

Dijkstra [1975; 1976] argued that programmers should not be required to specify
details such as synchronization that are not inherent in the problem. Not only is ines-
sential detail wasteful of coding time, it may have adverse effects on the clarity of the
program. It over specifies the required functionality. This is an argument for declara-
tive programming. In imperative programming, programmers have to specify the
sequences of tests. More often than not, such sequencing is a product of the computa-
tional model rather than the problem being solved. In Dijkstra’s Guarded Command
Language, the complex alternative (if) and iterative (do) statements are formed from
guarded statements. Each guarded statement (command) has the form:

<guard> -> statement.
The guard is a Boolean expression that evaluates to true or false. The alternative
statement contains one or more guarded statements:

if
G1 -> S1

G2 -> S2

...
Gn -> Sn

fi

Guards are not expected to be evaluated in any particular order. If only one guard Gi

evaluates true, the command Si is executed. If more than one guard evaluates to true,
the choice of which statement to be executed is indeterministic. If no guard is true,
execution of the if alternative has no effect. The iterative do statement is similar to
the alternative statement except that guarded statements are repeatedly evaluated until
all guards evaluate to false.

Many people including Hoare [1978] realized that Dijkstra’s guards provided a basis
for specifying synchronization in concurrent programs. In Hoare’s experimental con-
current language CSP (Communicating Sequential Processes), both message send and
receipt are guarded. CSP was not intended as a programming language but, rather, a
paradigm. Occam is the most well known language based on CSP’s synchronous
communication. The concurrent programming language Occam was the result of
satisficing (Chapter 2) the theoretical requirements with the difficulty of designing
hardware to support it. The Transputer is significant in two respects regarding the
FGCS: it provides direct hardware support for processes and communication and it
was designed as a building block for parallel machines.
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3.8 Earlier Manifestations of Guarded Commands

An earlier manifestation of guarded commands can be seen in database management
systems. In 1958 the management services section of General Electric Company used
decision tables to specify a prototype order processing system. A decision table is a
tabular arrangement that specifies a combinational machine. Finite state machines are
subdivided into combinational and sequential. Both current input and previous inputs
determine the output of sequential machines. In other words, the machine has a mem-
ory. With combinational machines, the output is dictated solely by the input.

As an example, a simple decision table (adapted from [Subramanian et al., 1992]) for
the hypothetical example of stock market trading in Chapter 2 takes the form of Fig-
ure 3.8.1.

Input Rule1 Rule2 Rule3 Rule4
interest rate down down down up
exchange rate up – down down

down up – up
Action
BT buy buy sell
BA buy buy sell
ATT buy sell buy sell

Fig. 3.8.1  Equity trading decision table

Rules are read vertically and conditions are separated fom actions. The underscores
represent don’t care conditions where the input is inconsequential on the output.
Other arrangements are used, but the main principle is to cover all possible input
combinations. Babbage used a number of graphical notations in the design of his
analytic engine. One of these can be recognized as a state transition diagram.

Experimental interpreters for a decision table language Tabsol [Kavanagh, 1960]
were developed by General Electric. General Electric’s favorable experience with
decision tables led to their inclusion in the company’s procedure-oriented language
Geocom [Sterbenz, 1971]. In the early 1960s, The Insurance Company of North
America produced a decision table system to manage a large complex file system
[Brown, 1962]. The system, called Loboc (Logical Business Oriented Language),
inputs conditional statements and outputs an assembler language program. The port-
ing of Loboc to a third generation machine is reported in Devine [1965].

The Decision Logic Translator [Reinwald, 1966] produced Fortran code for the IBM
1401 from a decision table specification. Fortab, developed by RAND for the IBM
7090, provided FORTRAN-embedded decision table entry [Armerding, 1962]. Fortab
tolerated indeterminism in a table by prioritizing rules. It selected the first rule found
to satisfy its condition in the order input by the programmer. The Systems Group of
CODASYL introduced the decision table programming language Detab-X
[CODASYL, 1962] for database management. Detab-X was designed to be compiled
to Cobol but the full language was never implemented. A subset of Detab-X, De-
tab/65, was implemented and became widely successful.
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A more recent manifestation of condition synchronization is seen in active databases.
Rather than a repository of passive facts, active databases are able to react to the data
they contain [Astrahan et al., 1976; Bunemann and Clemons, 1979; McBrien et al.,
1991]. The actions are specified by a set of rules. Triggers are predicates that are the
labels of rules.

trigger: Cond → Action
The conditions are tested against the database only when a trigger has been activated.
Triggers remain active for only one evaluation cycle.

Decision tables and decision trees are established aids in decision making [Gregory,
1988]. They have proved indispensable techniques of systems analysis [De Marco,
1979] and real-time specification [Hatley and Pirbhai, 1987].  The expert system
Emycin groups rules into decision tables. The tables are used to simplify the checking
for errors within sets of rules. Entries in the table summarize cases of conflict, redun-
dancy and missing cases.

3.9 Condition Synchronization in AI

Condition synchronization appeared in AI under the guise of PDIS. A Pattern-
Directed Inference System (PDIS) [Waterman and Hayes-Roth, 1978] is a form of
program control associated with the Impressionist Movement of AI (Section 1.8). It is
still represented today by languages such as OPS5 [Forgy, 1981]. Pattern-directed
systems refer to a method of procedure (or module) invocation. In a sequential com-
putation, the procedures of the system call each other hierarchically. Each program
module specifies precisely which module will be executed next by explicitly calling
it. The corresponding flow of execution is deterministic and most naturally sequen-
tial. In a pattern-directed organization, rules are not directly invoked by other rules.
Instead they are invoked by patterns that occur in the environment.

Long Term
Memory

Memory
Behavior
Mechanisms

Short
Term
Memory

Quiescent knowledge
Active knowledge

Perceiving
Thinking
Learning

Sensory data
Symbolic data

Fig. 3.9.1. A simple model of human cognition

A PDIS has three basic components: firstly, a collection of rules that can be activated,
or fired, by patterns in the environment; second, zero or more data structures that
form the environment; finally, an executive that controls the selection and activation
of rules. In the Impressionist Movement, PDIS were justified by a simple model of
cognition that consists of long term and short term memories with mental behavior
mechanisms relating the two, Figure 3.9.1. The rules represent long term memory.
The environment of data structures that can be examined and modified form the
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short-term memory. The executive comprises the mental behavior mechanisms of
perceiving, thinking and learning.

In PDISs, rules consist of antecedent-consequent pairs. The examination of data takes
place in the antecedent while the modification takes place in the consequent of the
rule. The data structures in the environment can range over lists, trees, graphs and
propositions. Data examination in PDIS consists of pattern matching portions of the
environment with the antecedents of rules. The patterns may be defined in many
ways: as simple strings, or complex graphs. The matching is not restricted to struc-
tural matching; evaluation of arbitrary constraints on the environment is allowed.
Data modification can be as simple as asserting that some proposition holds, or as
complex as arbitrary modifications of the environment. Even the executive structure
can vary from a simple implicit ordering to complex heuristics and metarules.

The execution of PDISs can be defined as a series of recognize-act cycles. This is
illustrated in Figure 3.9.2 by a hypothetical example of equity trading of Section 3.3.

PRIOR
ENVIRONMENT

{DU, ID, XD}

PRODUCTION
RULES

CONFLICT
SET

SELECTED
RULE

ACTION

ID ∧XU ∧DD → A1

ID ∧DU → A2 * * A2

XD → A3 *

IU ∧XD ∧DU → A4
POST
ENVIRONMENT

{XD}

Fig. 3.9.2. Simple RBS for equity trading

with the abbreviations:

IU: interest rate up
ID: interest rate down
XU: exchange rate up
XD: exchange rate down
DU: deficit up
DD: deficit down
A1: buy BT shares, buy BA shares and buy ATT shares
A2: buy BA shares, buy BT shares, and sell ATT shares
A3: buy ATT shares
A4: sell BA shares, sell BT shares and sell ATT shares

The "recognize" portion of the cycle consists of comparing rule conditions with the
environment to find matches. The "conflict set" comprises all rules, the antecedent of
which is satisfied by the current environment. Some form of conflict resolution, the
process of deciding which satisfied rule to fire, is applied to the conflict set. Once a
rule is selected, the cycle concludes with the "act" step during which the actions in
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the consequent of the rule are executed. The above example is for obvious reasons
said to be antecedent driven.

The example can be transcribed to Prolog:

%market(InterestRate, XchangeRate, Deficit)
market(down,up,down) :-

bt(buy), ba(buy), att(buy).
market(down,_,down) :-

bt(sell), ba(buy).
market(down,down,_) :-

att(buy).
market(up,down,up) :-

bt(sell), ba(sell), att(sell).
The underscore is the Prolog anonymous variable. Multiple occurrences are consid-
ered distinct variables. Each definite clause can be viewed as a pattern-directed mod-
ule. The environment is the current goal list to be satisfied. A clause guard corre-
sponds to a rule antecedent. The conflict set is the set of clauses whose guards are
satisfied. To execute a module means replace the goal in the environment with the list
of goals in the body of a clause.

The analogy between PDIS and Prolog breaks down in a number of respects:

• In Prolog only clauses matching the head of the goal stack can be executed. This
is not true of logic programming in general though; any clause that unifies with
any goal in the resolvent can be executed.

• In PDISs, the flow of control is determined by patterns that occur in the envi-
ronment. For Prolog the control is textual order, depth-first with backtracking on
failure. That is, Prolog is in the above sense a conventional organization in which
the procedures of the system call each other according to a fixed scheme. Each
program procedure decides which other procedure will be executed next by ex-
plicitly calling them. The corresponding flow of execution is sequential and re-
producible.

• Logic programming is nondeterministic while PDISs are usually indeterministic.
The distinction between deterministic, indeterministic and nondeterministic
comes from the theory of automata [Filman and Friedman, 1984]. A determinis-
tic automaton traverses one fixed computation path for each possible input. An
indeterministic automaton has points in the computation, branch points, where it
is possible to follow any one of a number of alternative paths; the choice made is
not dependent on the initial input. A nondeterministic automaton has similar
branch points but attempts to traverse all possible branches, possibly in a
breadth-first or depth-first manner. The potential for indeterminism in logic pro-
gramming is made nondeterministic in Prolog by backtracking on failure; that is
the Prolog evaluation of a program with the same input is always the same. In
Production Systems the environment generally consists of many distinct data
structures. A production rule can be used to modify any number of such data
structures. In Prolog, the body of a rule is used to replace only one goal literal.

• In Production Systems, there is a total separation of data examination from data
modification. With PDISs, examination takes part in the recognize part of the cy-



Metamorphosis 87

cle while modification takes part in the "act" part of the cycle. With Prolog, uni-
fication is eager; it combines data examination and data modification.

• The pattern matching of the data structures in PDIS is much more complex than
Prolog. The environment of a PDIS is a multiset. Set inclusion of structured data
is a highly nondeterministic computation. Restrictions on the allowed patterns
and specialized algorithms, such as RETE [Forgy, 1982], have been developed to
perform pattern matching efficiently.

• Pattern-directed systems are antecedent driven. Once a member of the conflict
set is chosen the action taken is not rescinded. Since Prolog is consequent driven,
bindings of variables accrued in a Prolog refutation proof are only considered
useful if the empty clause is eventually derived. A Prolog program would modify
the data in an attempt to derive the empty clause. If this attempt fails, all modifi-
cations to the environment since the last branch point are meaningless.

• With backwards reasoning, as used in logic programming, when the environment
is empty the computation terminates with success. When the conflict set is
empty, the goal fails. For a forward reasoning pattern-directed inference engine,
as described in the example above, the computation certainly terminates when
the conflict set is empty but not necessarily with failure. The nonempty environ-
ment represents the answer to the problem the program was designed to solve.

3.10 Guarded Definite Clauses

To some extent, a Prolog program can simulate pattern-directed inference by pre-
venting backtracking using the cut as the first goal in a clause. By placing the cut
further into the body, the clauses can often be made deterministic. In the intended
mode of use of the qsort program above, the clauses for partition are deterministic.
The pattern in the head distinguishes the first clause from the second and third clause.
The comparison test in the body distinguishes the second and third clauses. Experi-
enced Prolog programmers are often tempted to include a cut in each clause for parti-
tion to utilize this fact:

%partition(List,Pivot,Lesser,Greater)
part([],Pivot,[],[]) :- !.
part([Item|List],Pivot,Lesser,[Item|Greater]) :-

Pivot=<Item, !,
part(List,Pivot,Lesser,Greater).

part([Item|List],Pivot,[Item|Lesser],Greater) :-
Item<Pivot, !,
part(List,Pivot,Lesser,Greater).

The cut in the last clause is not, of course, necessary but is added for symmetry. The
cuts are metalevel directives to the interpreter to take advantage of the mutual exclu-
sion (between clauses) and prevent backtracking; the cut prunes the binding frame
stack to the most recent previous choice point.

However, for pattern-directed inference systems, any output variable substitution
would have to be considered as a component of the "act" part of the recognize-act
cycle; with Prolog it is a component of the recognize part. The resolution mechanism
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of Prolog is intertwined with unification. The resolution mechanism of Robinson
[1965] deliberately integrates unification with complimentary literal elimination (a
manifestation of the cut rule). Unification can be thought of as a sophisticated two-
way pattern matching. It is an integration of two data-manipulation operations: input
term pattern matching and output variable substitution. Input term pattern-matching
subsumes structured data component access, syntactic equality testing and parameter
passing. Output variable substitution subsumes data construction and returning val-
ues.

By using the Prolog syntactic equality primitive, unification can be performed in the
body of clauses but this really does not solve the problem of the eagerness of clause
head unification. For some arguments, the syntactic equality tests are more like what
is needed.

%partition(List,Pivot,Lesser,Greater)
part(List,Pivot,Lesser,Greater) :-

List==[], !,
Lesser=[], Greater=[].

part(List,Pivot,Lesser,Greater) :-
List==[Item|List1], Pivot=<Item, !,
Greater=[Item|Greater1],
part(List1,Pivot,Lesser,Greater1).

part(List,Pivot,Lesser,Greater) :-
List==[Item|List1], Item<Pivot, !,
Lesser=[Item|Lesser1], part(List,Pivot,Lesser1,Greater).

But this is still not quite right. The Prolog syntactic equality primitive fails if the
terms are not identical, variables and all. What is required is a primitive that will
pattern match (data component access and parameter passing) and cause suspension,
much like Absys [Foster and Elcock, 1969] until incoming variables are bound by
other goals which share variables. As a first attempt, the desired condition synchroni-
zation is formalized by a decomposition of a definite clause into two parts: con-
straints that only test the input and the parts of the clause that can cause variable
bindings.

<definite-clause> ::= <guard> | <body>
<guard>::= <head> :- <constraints>

The program for partition then becomes:

//partition(List,Pivot,Lesser,Greater)
part(List,Pivot,Lesser,Greater) :- []«List

| Lesser=[], Greater=[].
part(List,Pivot,Lesser,Greater)

:- [Item|List1]«List, Pivot=<Item
| Greater=[Item|Greater1], part(List1,Pivot,Lesser,Greater1).

part(List, Pivot, Lesser, Greater)
:- [Item|List1]«List, Item<Pivot
| Lesser=[Item|Lesser1], part(List,Pivot,Lesser1,Greater).

In keeping with object-oriented programming, the // characters indicates that what
follows on the same line is a comment. The primitive « is the instance relation: the
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left-hand argument (local variables) is an instance of the right hand argument (global
variables). This can be interpreted in terms of ground (closed) instances. A non-
ground term can be thought of as representing the set consisting of all ground (closed)
instances of it. The instance relation is then the subset relation.

This instance relation more precisely explained as follows. Let F be the set of functor
symbols used in the program, typically denoted by f. (Constants are functors of arity
zero.) Let V be an enumerably infinite set of variable symbols including those in the
program and typically denoted by X. Then F*(V) will denote the inductively defined
set of terms of type F over V. A substitution is a mapping from V to F*(V) such that
only a finite number of variables are not mapped to themselves. A substitution can be
specified by a finite set pairs{X1/t1, ... Xk/tk} where ti≠Xi for i = 1...k. A substitution

θ:V→F(V) can be homogeneously extended to a map θ:F*(V) →F*(V):
f(t1,...,tk)θ = f(t1θ,...,tkθ).  By convention, substitution application is written postfix.

Let vars be the function that maps terms to the subset of variable symbols occurring
in them. A term t’ is said to be an immediate instance of a term t, written t’–< t, if they
are related by one of three elementary substitutions:

t’=t{X/f(X1,...,Xk)} & X∈vars(t) & {X1,...,Xk}∩vars(t)= ∅ & (if i≠j then Xi≠Xj) or

t’=t{X/X’} & {X,X’}⊆vars(t) or

t’=t{X/X’} & X∈vars(t) & X’∉vars(t).

The last elementary substitution is a single variable renaming. Let « denote the tran-
sitive closure of –<. If t’«t, then t’  is said to be is an instance of t. Naturally enough, «
is transitive, «2⊆«, but it is also reflexive, ∆⊆«, where ∆ is the identity relation. In

other words (F*(V)), «) forms a preorder [Reynolds, 1970].

The instance primitive « does not cause any bindings of variables in its right hand
argument but will bind variables local to the clause in its left hand argument. If the
call to part is insufficiently bound to satisfy any guard constraint, the call suspends.
The difference from a Prolog delay primitive is that the delay primitive only causes
suspension. Here any call suspends if it is insufficiently instantiated to satisfy the
guard of any of the defining clauses.

The body of a guarded definite clause represents subsequent action if the guard is
satisfied. A goal is not reduced to the body of a clause until its guard is satisfied. The
remaining part of the GDC (Guarded Definite Clause) program for the quicksort is:

//quicksort(UnsortedList, SortedList)
qsort(Unsorted,Sorted) :- []«Unsorted | Sorted=[].
qsort(Unsorted,Sorted) :- [Item]«Unsorted

| Sorted=[Item].
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qsort(Unsorted,Sorted):- [Pivot,Item|List]«Unsorted
| part([Item|List],Pivot,Lesser,Greater),

qsort(Lesser,LSorted),
qsort(Greater,GSorted),
conc(LSorted,[Pivot|GSorted],Sorted).

//concatenate(List1,List2,List1+List2)
conc(List1,List2,List1List2) :- []«List1

| List1List2=List2.
conc(List1,List2,List1List2) :- [Item]«List1

| List1List2=[Item|List2].
conc(List1,List2,List1List2) :- [Item1,Item2|List11]«List1

| List1List2=[Item1, Item2|List3],
conc(List11,List2,List3).

3.11 Simulation of Parallelism by Interleaving

With the control provided by condition synchronization, part builds up its sublists
item by item as they become available, qsort filters them item by item and conc
consumes them item by item, as they become available. A reduction scenario for the
goal

:- qsort([2,1,3],Ss), ans(Ss).
best illustrates this. As in Prolog the convention is used that if a variable identifier
ends with a letter s it is intended to be used as a list. Underscores will denote those
goals that satisfy some clause guard and so can be reduced. As previously, the ans
goal is used to accumulate the answer in the same way as previously.

Reducing the only goal satisfying a clause guard:

:- part([1,3],2,Ls,Gs), qsort(Ls,LSs), qsort(Gs,GSs),
conc(LSs,[2|GSs],Ss), ans(Ss).

:- Ls=[1|L1s], part([3],2,L1s,Gs), qsort(Ls,LSs),
qsort(Gs,GSs), conc(LSs,[2|GSs],Ss), ans(Ss).

 (The word reduction sometimes seems to be inappropriate terminology for an action
that may increase the complexity. The resolvent forms a network of goals connected
by shared variables.)

Continuing, indeterministicly choosing the goal to reduce:

:- part([3],2,L1s,Gs), qsort([1|L1s],LSs),
qsort(Gs,GSs), conc(LSs,[2|GSs],Ss), ans(Ss).

:- Gs=[3|G1s], part([],2,L1s,G1s), qsort([1|L1s],LSs),
qsort(Gs,GSs), conc(LSs,[2|GSs],Ss), ans(Ss).

While underscored goals can be reduced in any order, equality primitives will be
given preference, for it is only through these that output variables become bound.

:- part([],2,L1s,G1s), qsort([1|L1s],LSs), qsort([3|G1s],GSs),
conc(LSs,[2|GSs],Ss), ans(Ss).
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:- part([],2,L1s,G1s), part(L1s,1,L2s,G2s), qsort(L2s,L2Ss),
qsort(G2s,GS2s), conc(L2s,[1|GS2s],LSs), qsort([3|G1s],GSs),
conc(LSs,[2|GSs],Ss), ans(Ss).

:- L1s=[], G1s=[], part(L1s,1,L2s,G2s), qsort(L2s,L2Ss),
qsort(G2s,GS2s), conc(L2s,[1|GS2s],LSs), qsort([3|G1s],GSs),
conc(LSs,[2|GSs],Ss), ans(Ss).

:- G1s=[], part([],1,L2s,G2s), qsort(L2s,L2Ss),
qsort(G2s,GS2s), conc(L2s,[1|GS2s],LSs), qsort([3|G1s],GSs),
conc(LSs,[2|GSs],Ss), ans(Ss).

:- part([],1,L2s,G2s), qsort(L2s,L2Ss),
qsort(G2s,GS2s), conc(L2s,[1|GS2s],LSs), qsort([3],GSs),
conc(LSs,[2|GSs],Ss), ans(Ss).

:- part([],1,L2s,G2s), qsort(L2s,L2Ss),
qsort(G2s,GS2s), conc(L2s,[1|GS2s],LSs),
conc(LSs,[2,3],Ss), ans(Ss).

:- L2s=[], G2s=[], qsort(L2s,L2Ss),
qsort(G2s,GS2s), conc(L2Ss,[1|GS2s],LSs),
conc(LSs,[2,3],Ss), ans(Ss).

There is a certain amount of concurrency available but it is severely restricted (as was
the intention). Continuing to the bitter end:

:- G2s=[], qsort([],L2Ss),
qsort(G2s,GS2s), conc(L2Ss,[1|GS2s],LSs),
conc(LSs,[2,3],Ss), ans(Ss).

:- qsort([],L2Ss), qsort([],GS2s), conc(L2Ss,[1|GS2s],LSs),
conc(LSs,[2,3],Ss), ans(Ss).

:- L2Ss=[], qsort([],GS2s), conc(L2Ss,[1|GS2s],LSs),
conc(LSs,[2,3],Ss), ans(Ss).

:- qsort([],GS2s), conc([],[1|GS2s],LSs),
conc(LSs,[2,3],Ss), ans(Ss).

:- GS2s=[], conc([],[1|GS2s],LSs), conc(LSs,[2,3],Ss), ans(Ss).
:- conc([],[1],LSs), conc(LSs,[2,3],Ss), ans(Ss).
:- LSs=[1], conc(LSs,[2,3],Ss), ans(Ss).
:- conc([1],[2,3],Ss), ans(Ss).
:- Ss=[1,2,3], ans(Ss).
:- ans([1,2,3]).

As can be seen, condition synchronization does appear to provide control over pre-
mature binding. There is no combinatorial explosion of parallel goals, as happens
with unrestricted parallelism.

Condition synchronization tempers overeager nondeterminism. When there are
choices to be made, goals are suspended until there is sufficient information on which
to make a choice. In this example, the information uniquely determines the appropri-
ate clause. This is a manifestation of the principle of least commitment used in con-
straint solvers as described in Chapter 1. Least commitment can avoid assigning val-
ues to unknowns until they are, often, uniquely determined. It minimizes the amount
of guessing and therefore nondeterminism.
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3.12 Indeterminacy

The syntax of GDC given above can be considerably simplified by representing the
instance constraints by patterns in the head of a clause. The program for qsort then
takes the form

//quicksort(UnsortedList, SortedList)
qsort([],Sorted) :- true

| Sorted=[].
qsort([Item],Sorted):- true

| Sorted=[Item].
qsort([Pivot,Item|List],Sorted):- true

| part([Item|List],Pivot,Lesser,Greater),
qsort(Lesser,LSorted),
qsort(Greater,GSorted),
conc(LSorted,[Pivot|GSorted],Sorted).

//partition(List, Pivot, Lesser, Greater)
part([],Pivot,Lesser,Greater) :- true

| Lesser=[], Greater=[]
part([Item|List1],Pivot,Lesser,Greater) :- Pivot=<Item

| Greater=[Item|Greater1], part(List1,Pivot,Lesser,Greater1)
part([Item|List1],Pivot,Lesser,Greater) :- Item<Pivot

| Lesser=[Item|Lesser1], part(List,Pivot,Lesser1,Greater).

//concatenate(List1, List2, List1List2)
conc([],List2,List1List2) :- true

| List1List2=List2.
conc([Item],List2,[List1List2])

| List1List2=[Item|List2].
conc([Item1,Item2|List11],List2,List1List2):-

| List1List2=[Item1, Item2|List3], conc(List11,List2,List3).
The patterns in the head of a clause now denote pattern matching rather than unifica-
tion. When the guard constraint can be completely captured by pattern matching, the
empty condition is represented by the true condition.

What is lost from Prolog by condition synchronization is completeness not sound-
ness. No unsound inferences can be made. The completeness sacrificed by replacing
call-head unification in Prolog by condition synchronization manifests itself in the
restricted mode of use of program clauses. For example, the relations for concatenate
can only "fire" when the first argument of the call is a list. Unlike Prolog, the con-
catenate relation as it stands cannot be used to split a list; that is, with the third argu-
ment known but the first and second unknown.

While invertability is an attractive feature of Absys and Prolog, practical Prolog pro-
grams forgo this to avoid the bottomless pits of depth-first search or the use of cuts
for the sake of efficiency. With condition synchronization, the patterns in the head of
the clause are being used for metalevel control. Restricting the mode of use of rela-
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tions in this way (directed relations), makes the semantics closer to functional lan-
guages.

PDISs and decision tables usually make no attempt at completeness. The lack of
completeness of depth-first search was strongly criticized in Planner [Sussman and
McDermott, 1972]. Hewitt’s intention for Planner was a language for pattern directed
invocation. Hewitt and Inman [1991] say:

The controversial decision to use backtracking served expediency,
but moved the semantics of Planner-69 fundamentally away from
the pattern-directed invocation metaphor in which it was grounded.
What was needed was to take the metaphor that stood behind Plan-
ner more seriously.

Condition synchronization has severely crippled any prospect that GDC might be
complete. There is no implicit search in functional programming but search can be
programmed. In systems programming the problem is not to find all solutions to a
problem but to find one efficiently. With an operating system, only one solution as to
how a file might be written to disc is required. Like guarded commands in GDC, only
one clause whose guard is satisfied is chosen to reduce a goal. The use of the guard in
GDC makes the quicksort program deterministic so it is not affected by this decision.
When more than one guard is satisfied, the programmer cannot be certain which one
will be chosen. The guard allows one to express complex preconditions for the appli-
cation of a rewrite. Variants of Prolog in which search is abandoned beyond the guard
have been called committed choice languages.

3.13 The Premature Binding Problem Revisited

While there is no search beyond the guard, there is still search within the guard as the
following GDC program to find a key at the node of a binary tree illustrates:

//onTree(Key, Tree, Found)
onTree(Key,tree(Left,Key1,_),Found)

:- Key=/=Key1, onTree(Key,Left,Found)
| true.

onTree(Key,tree(_,Key,_),Found)
:- true.
| Found=found.

onTree(Key,tree(_,Key1,Right),Found)
:- Key=/=Key1, onTree(Key,Right,Found)
| true.

The =/= primitive causes a call to suspend if either of its arguments are insufficiently
instantiated to determine that they are different. If the root of the tree does not contain
the key, two clauses are candidates for committal. Unlike previous examples, which
only use primitives in the guard, the onTree example introduces user-defined goals
in the guard. Determining the guard conditions, will necessarily recursively spawn
other onTree goals. As the new goals invoke new guards, this can lead to a system
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of arbitrarily nested guards. As will be explained, nested guard conditions can cause
premature binding.

With the logical infix implication symbol, ←, assumed to be left associative, the
guarded clause

A :- B | C

is logically equivalent to A←B←C. Suppose an initial query:

← a1, a2,… aj, … an.  (← Q)

is given and where, for the sake of exposition, the arguments of the goals have been
suppressed. Note that the initial query should not be considered as a list of atoms, no
ordering is implied, rather it is a multiset set. Suppose for some clause

h ← c1, c2,… ← b1, b2,…,bm. (C)

in the program aj= hθ1 (for some substitution θ1). If θ1 is an input match substitu-
tion and if the guard condition (← c1, c2, …)θ is satisfiable with some substitution
of variables θ which is an extension of θ1 (i.e. θ = θ1θ2, juxtaposition denoting
composition of substitutions) then the clause is a candidate for committal. If this
clause is the one selected, the goal aj is replaced by the body b1, b2, … bm so that
the resolvent of the initial goal and the input clause reduces to

← (a1, a2,… b1, b2,… bm,… an)θ

If any of the bindings entailed by θ are due to recursive guards of the resolving clause

C, they could well be communicated to other ai (i≠j), which share variables with aj,

before committal.

← (a1, a2,… aj,… an)θ (← Q')

If by some chance the clause C is not committed but some other is, the communicated
bindings will, in general, not relate of the chosen clause. It is then more likely that the
query will fail because the variable bindings are more specific than is warranted.
There is no need to worry about the substitution θ1 since this is limited to pattern
matching and only affects the local variables of the clause.  We are then left with the
bindings caused by the guard constraints:

← (a1, a2, …aj, … an)θ2 (← Q'')

There will be no problem if the bindings generated by the guard θ2 do not cause

bindings of the variables in the call, the global variables.

aiθ=aiθ2=ai

The possible inequality of ← Q', ← Q'' and ← Q is a formalization of the premature
binding problem.  The equality of ← Q' and ← Q'' is guaranteed by pattern matching
and the equality of ← Q'' and ← Q can be thought of as the natural extension of pat-
tern matching for guards with constraints other than pattern matching. This leads to
the notion of guard safety: a guard is said to be safe if its evaluation does not incur
any binding of nonlocal variables.
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Safe guards can only test the input parameters since they produce no output bindings.
For example, the membership relation defined by

//member(Element,List)
member(X,[X|Y]) :- true | true
member(X,[Y|Ys]) :- X=/=Y | member(X,Ys).

is clearly safe as can be easily recognized syntactically because there are no equality
predicates in the body of any of its clauses or the bodies of any of the clauses of its
subgoals. (Note that the recursive call to member in the second clause could equally
well be part of the guard with the same declarative and operational effect. This gives
another way of recognizing a safe guard: the body goals can safely be transferred to
the guard.)

By comparison, the onTree relation defined previously is unsafe, as the variable
Found in a top level call can be bound to found by a recursively invoked guard call
before committal of the initial invocation. In this example, this does not cause an
inconsistency because there is no conflict in what the variable Found can be bound
to; it can only be bound to the constant found and nothing else.  Furthermore, it will
only be bound by a recursive guard call if the Key is on the tree so the conclusion
will be sound. This example illustrates that the property of safety does not affect
soundness. Because of indeterminism, the unrecognized presence of this problem can
lead to unnecessary failure when greater care with the programming might circum-
vent the problem.

A simple way to make the onTree program safe is by making local copies (copies in
the guard) of all endangered variables:

//onTree(Key, Tree, Found)
onTree(Key,tree(Left,Key1,_),Found)

:- Key=/=Key1, onTree(Key,Left,FoundL)
| FoundL=Found.

onTree(Key,tree(_,Key,_),Found) :- true
| Found=found.

onTree(Key,tree(_,Key1,Right),Found)
:- Key=/=Key1, onTree(Key,Right,FoundR)
| FoundR=Found.

The local copy is only unified with the global parent after committal.

With the addition of an arbiter, onEither, the onTree goal can be moved out of the
guard entirely:

//onTree(Key, Tree, Found)
onTree(Key,tree(Left,Key1,Right),Found):- Key=/=Key1

| onTree(Key,Left,FoundL),
onEither(FoundL,FoundR,Found),
onTree(Key,Right,FoundR).

onTree(Key,tree(_,Key,_),Found) :- true
| Found=found

onTree(_,emptyTree,Found) :- true
| Found=notFound.
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//onEither(FoundL,FoundR,FoundEither)
onEither(found,_,Found) :- true

| Found=found.
onEither(_,found,Found) :- true

| Found=found.
onEither(notFound,notFound,Found)

| Found=notFound.

A hand trace of a call to the process onTree reveals that the data tree in the call is
mimicked by a dynamically constructed tree of onEither processes and found or
notFound eventually percolates to the top of the tree.

In the final version of onTree, only primitives appear in the guards. With unre-
stricted guards, a GDC program gives rise to a hierarchical computation. The com-
putation is organized as an and/or goal tree, the depth of the or-tree corresponding to
exhaustive search in the nesting of guards. Recursive guards describe a complex
inference step of a nature similar to paramodulation or typed inference. Because the
guards are recursive, in general, they will be undecidable. There is a sense where flat
guards are modular with regard to synchronization whereas deep guards are not.

In PDISs and decision table languages, the conditions are often required to be primi-
tive to make pattern matching and compilation tractable. If the guards only contain
primitives, they can be guaranteed decidable and safe. The flat restriction only allows
primitive (and consequently nonrecursive) predicates in the guard that test the input
parameters and perform no output. In the flat regime the computation degenerates to
an and-tree and hence the name flat. The possible primitives include syntactic equal-
ity-inequality testing, comparisons, and type checking none of which can perform any
output. (In fact, the guard can be an arbitrary Boolean combination of constraints, not
just conjunctions, but then the clause will not necessarily be definite, in the logical
sense.) The language FGDC, so far specialized, is now an indeterministic conditional
rewrite language. Deterministic (functional) conditional rewrite languages have been
known for some time [Griesmer and Jenks, 1971; Hearn, 1971; Belia et al., 1980].

The restriction to a flat subset of the language is not debilitating as the final onTree
program indicates. How expressive the language is will depend on the range of guard
constraints. The restriction does require, however, a shift of programming style fur-
ther away from Prolog. The GDC programmer cannot fall back on the exhaustive
search of implicit failure driven loops or or-parallelism; search has to be pro-
grammed. Those programs that are not naturally flat and require search can be re-
written using suitably chosen recursive data structures, as will be seen in later chap-
ters.

3.14 Decision Tree Compilation

When the guards are flat, there is even greater correspondence between FGDC and
decision tables. Different strategies for translating decision tables into algorithms
were discussed in Montalbano [1964]. The optimal methods of Rabin [1971] and
Yasui [1971], reduce the number of constraints tested. In the first GDC partition
relation defined above (not using pattern matching in the head of the clause), the test
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[Item1|List1]«List1 occurs in the guard of two clauses. Composing guard con-
straints into decision trees can eliminate redundant tests:

//partition(List,Pivot,Lesser,Greater)
part(List,Pivot,Lesser,Greater)

:- []=List | Lesser=[], Greater=[].
+ :- [Item|List1]«List,

{Pivot=<Item | Greater=[Item|Greater1],
+ Item<Pivot

| Lesser=[Item|Lesser1], part(List,Pivot,Lesser1,Greater)
}.

Alternative parts of clauses are denoted by a + symbol borrowed from CCS [Milner,
1980]. The heads of all clauses for partition are all the same and so are omitted.

Furthermore, the two constraints Pivot=<Item and Item<Pivot are exclusive and
might be further coalesced into a single test:

//partition(List,Pivot,Lesser,Greater)
part(List,Pivot,Lesser,Greater)

:- []=List
| Lesser=[] | Greater=[]

+ :- [Item|List1]=List,
{Pivot=<Item

| Greater=[Item|Greater1],
+ otherwise
| Lesser=[Item|Lesser1], part(List,Pivot,Lesser1,Greater)

}.
using otherwise (or else). The otherwise clause is only tried if all others are inappli-
cable.

3.15 A Brief History of Guarded Definite Clauses

To the uninitiated, the origins and relationships of logic programming languages may
appear as shrouded in mystery as those of the Judaeo-Muslim-Christian religions.
Both have had their prophets, heresies and schisms. (With logic programming the
time-scale has been somewhat shorter.) At least six authors, Robinson [1983], Cohen
[1988], Kowalski [1988], Elcock [1991] and Colmerauer and Roussel [1992] have
chronicled the history of sequential Prolog. Early investigations into parallel Prolog
were Pollard [1981] and Conery and Kibler [1981]. The parallel descendants of
Prolog will not be mentioned further and it will be left to someone else to fill in this
branch of the family tree.
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1979 Van Emden and de Luceana [1979] embed the Kahn and MacQueen model
of stream processing in logic programming. This gave a process interpreta-
tion of goals in contrast to the previous procedural interpretation. Goals in a
query or body of a clause are grouped into sequential and parallel conjunc-
tions. Variables shared between parallel conjunctions are regarded as com-
munication channels. Parallel processes suspend if shared variables are not
instantiated to lists. Input and output modes are determined by the initial
goal. The examples given are deterministic. The authors have great diffi-
culty in getting their paper accepted for publication. It is not published until
three years later as an invited contribution to a book [Clark and Tarnlund,
1982].

Dausmann et al. [1979] use a variable delay annotation /B to synchronize
processes in concurrent logic programming. The occurrence of the annota-
tion X/B delays reduction of the goal containing it until X is ground.

Clark and McCabe [1979] produced IC-Prolog (a minor prophet), a version
of Prolog that introduces a confusion of control facilities for synchronizing
the concurrent evaluation of goals. IC-Prolog provides variable annotations
to synchronize coroutines similar to Conniver [Sussmann and McDermott,
1972]. However, both producer and consumer annotations are allowed. An-
notations can appear in the head of a clause as well as the body. IC-Prolog
introduces Dijkstra [1975] like guards that make clause head unification and
guard constraints atomic. Unlike guarded commands, a clause with a suc-
cessful guard is not exclusive. There is variable delay annotation ’!’, similar
to Dausmann et al. [1980]. Stream primitives handle input and output.

1980 Hansson et al. [1980] propose a Kahn and McQueen interpretation of a logic
language based on a natural deduction system of Prawitz [1965]. Producers
and consumers are designated by an equational syntax. Nondeterminacy is
handled by backtracking.

Belia et al. [1980] describe FPL (Functional and Predicate Logic) a Horn
clause equational functional setting for a deterministic language with guards
(the word constraint is used instead of guard) and directed relations. Argu-
ments of relations are designated as input and output. These modes are
similar to the modes used in Edinburgh Prolog compiler [Warren, 1977] to
improve the efficiency of compilation. The program is viewed as a set of
conditional rewrite rules. Lazy evaluation semantics allows the use of
streams.

1981 Conery and Kibler [1981] identified four prospects for parallelism in logic
programs: and-parallelism, or-parallelism, stream-parallelism and search-
parallelism. In search-parallelism, matching clauses are searched for in par-
allel.
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With the Relational Language, Clark and Gregory [1981] make the guard
introduced in IC-Prolog indeterministic (committed choice) as happens with
guarded commands. Variables in the guard must be ground by the call pat-
tern for the guard to be satisfied. In the examples given, the guard con-
straints are primitives (flat) but this is not explicitly stated as a restriction.
Producer occurrences of variables in goals are annotated. Data flows from
annotated variables to unannotated variables. Unannotated variables are
"read-only". An attempt to bind a read-only variable by clause head unifica-
tion causes suspension of the clause. Output arguments are required to be
unbound.

In this year, the first FGCS International Conference on Fifth Generation
Computer Systems is held in Japan.

1982 Japanese launch FGCS initiative to build parallel knowledge-based ma-
chines using Prolog as a kernel language. Initial funding for five years is
granted with a promise of renewal for a further five years subject to satis-
factory progress.

1983 Shapiro [1983] attempts to clean up the Relational Language with Concur-
rent Prolog. Shapiro relaxes the restriction that the guard variables need to
be ground and primitive. Allowing variables and user defined relations in
the guard introduces the possibility of premature binding as described in
Chapter Three. In Concurrent Prolog this is handled by having multiple
binding environments as in or-parallel Prolog implementations. The guard
controls the making of local environments public. Process synchronization is
controlled by variable annotations. Rather than output variables being an-
notated, "read-only" variables are annotated á la Conniver [Sussman and
McDermott, 1972]. As a visitor to ICOT, Shapiro persuades the FGCS proj-
ect to switch allegiance from Prolog to Concurrent Prolog with a wealth of
programming examples suitable for systems programming.

In response to Concurrent Prolog, Clark and Gregory [1981] propose Parlog
by weakening the restrictions on the guard of the Relational language.
Rather than use multiple environments they require guards to be safe; a
property that is undecidable. They abandon producer annotations and use
input/output modes assigned on a per relation basis as done by Belia et al.
[1980].
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1985 FGCS project produces first PSI (Personal Sequential Inference Machine)
with SIMPOS (Sequential Inference Machine Personal Operating System)
written in an object-oriented extension of Prolog, KL0.

Read-only unification turns out to be order dependent [Ueda, 1985a;
Saraswat, 1986] and multiple environments are difficult to implement. Un-
der the influence of Parlog, Ueda [1985b] transforms Concurrent Prolog into
GHC (Guarded Horn Clauses). GHC uses a single binding environment and
dispenses with read-only variables. The guard is used as a runtime safety
check. Consequently, GHC programs have a greater tendency to deadlock.
Body goals are allowed to be spawned before commitment, which causes a
large amount of speculative computation.

Because of difficulties with implementation of multiple environments, Con-
current Prolog goes flat (only primitives in the guard). Semantic problems
prompt the restricted use of read-only annotations [Mierkowsky, Taylor,
Shapiro, Levy and Safra, 1985]. Even for the flat language, the principle
difficulty with read-only variables as a method of synchronization is that
relations fail to be modular with respect to synchronization: the program
behavior depends on the form of the call.

1986 Ringwood [1986] cleanses Parlog under influence of GHC: GDC (Guarded
Definite Clauses) replaces misleading mode declarations by pattern match-
ing and explicit output. Like GHC the guard is the only form of synchroni-
zation. Unlike GHC the guard controls the synchronization of body goals.
Safety is not the problem it was thought to be. It does not cause unsound
inferences.

Vulcan [Kahn et al., 1986] is a simulation of Actors in FCP.

1987 FGCS secures funding for further 5 years, and produces first version of
multi-PSI – a number of PSIs connected by a network. Multi-PSI is used to
prototype the PIM (Parallel Inference Machine). The principle criticism of
the GHC synchronization mechanism is that it fails to be modular with re-
spect to synchronization: the behavior depends on the nesting of subsequent
guard calls. This makes it difficult to implement. Chikayama at ICOT en-
hances GHC (by adding Parlog-like metacalls), while simplifying it (by
making it flat, FGHC) to produce KL1 (Kernel Language 1), the kernel
language of FGCS. Parlog86 is viewed as a set of indeterministic condi-
tional rewrite rules [Ringwood, 1987a] similar to Belia [1980].

Following Jaffar and Lassez [1987], Maher [1987] interprets concurrent
logic languages as constraint languages.

Mandala [Ohki et al., 1987] is a simulation of Actors in KL1.
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1988 FGCS produce PIMOS (Parallel Inference Machine Operating System) for
PIM, written in KL1 and tested on multi-PSI [Chikayama et al., 1988].

A’UM [Yoshida and Chikayama, 1988] is a further development of Man-
dala.

1989 Saraswat [1989] elaborates the constraint interpretation of Maher [1987].

AI Ltd produce Strand88 [Foster and Taylor, 1989] a commercial imple-
mentation of a restricted version of FGDC (previously known as Flat Parlog
with Assignment).

1991 FGCS produce first working PIM.

Strand Software Technologies (remnant from collapse of AI Ltd) produce a
distributed version of Strand88.

1992 FGCS complete the 10-year research program with an international confer-
ence. FGCS software is made public domain: IFS (ICOT free Software).
Unfortunately, software only runs on PSI and PIMs that are not sold com-
mercially. ICOT gets extension for further two years on much reduced scale
to provide implementations for Unix.

POOL [Davison, 1992] is a simulation of Actors in Parlog. POOL is re-
named POLKA because of a clash with a prior concurrent object-oriented
language.

Gudemann and Miller [1992] produce a compiler for Linear Janus, a version
of Strand with a constraint interpretation [Saraswat, 1989]. Variables are
restricted to two occurrences, one in the guard, one in the body of a clause
(linearity). The compiler compiles to C.

1993 Ericsson produce a version of Strand with a functional syntax called Erlang
[Armstrong et al., 1993]. Erlang can be recognized as having a single im-
plicit output argument for every relation. The language is targeted at real-
time programming, in particular telephony applications.

1994 ICOT release KL1C, a version of KL1 that compiles to C.

SICS (Swedish Institute for Computer Science) develop AKL [Janson, 1994]
merge a constraint interpretation of concurrent logic languages with OR-
parallel Prolog.
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1995 AITEC, the Japanese Research Institute for Advanced Information Technol-
ogy established as a successor to ICOT. The main activities are dissemina-
tion of the ICOT Free Software (IFS) and forecasting the future of informa-
tion technology. AITEC release the version 2 of KL1C.

DFKI (German Research Center for Artificial Intelligence) develop OZ
[Smolka, 1995], a higher order functional extension of AKL.  This can be
compared with previous attempts to provide multiparadigm languages, e.g.
POPLOG [Anderson, 1989]

1997 AITEC release version 3 of KL1C.

OZ2 [Henz, 1997] replaces the fine grain concurrency with explicit thread
based concurrency.

1999 Ericsson announced the signing of a £270 million contract with British Tele-
com to deliver voice over ATM. "The large-scale network, integrating cir-
cuit-switched AXE and packet-switched ATM, will handle all of BT's na-
tional and international traffic as well as interconnect traffic."  An integral
part of the solution, AXD 301, was developed in Erlang.

OZ3 extends OZ2 with Concurrent Prolog like read-only variables called
futures (following functional programming nomenclature) to assist Internet
programming.

AITEC release source code of KLIC to be maintained by a body of inter-
ested users.

The principle difference between the three original branches of the church (transub-
stantiation) lies in the way in which synchronization is achieved. In GHC, a call sus-
pends if call-head unification attempts to bind a nonlocal variable. For Concurrent
Prolog, a call suspends if unification attempts to bind a read-only variable. In Par-
log86, the head of a clause is only used for pattern matching. Term matching sus-
pends waiting for nonvariable input. A call suspends until it satisfies some guard.

The development of the Guarded Definite Clause languages can be compared with
the development of CSP [Hoare, 1978, 1985] and CCS [Milner, 1980]. Programming
styles, expressiveness, examples, theoretical considerations and the clarity of one
have led to modifications in another. This mutual monitoring has brought the strands
of the GDC church closer together but has brought about political differences of
opinion as who invented, or more truthfully introduced, what and when.
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Chapter 2

Fifth Generation Architecture

The architect should be equipped with knowledge of many branches
of study and varied kinds of learning, for it is by his judgement that
all work done by other arts is put to the test.  This knowledge is the
child of practice and theory.

Marcus Vitruvius Polio,
Roman architect and engineer of the first century BC

At the beginning of the 1980s, the Japanese Ministry of International Trade and In-
dustry (MITI) usurped the Fifth Computer Generation with an initiative to commer-
cialize knowledge-based systems.

Fig. 2.0.1  Fifth Generation tea party1

Advances in hardware had characterized the first four computer generations. This
generation was to be different from previous ones. It was to be driven by software
                                                          
1 Any resemblance to a Macintosh is intentional.
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technology and threatened to exploit expert systems, the fruits of US research. The
initiative was intended to provide solutions to real-world engineering and commercial
problems.

Fifth Generation computers are regarded as forming the corner-
stone of so-called intelligent consumer electronics – sophisticated
televisions, video recorders and learning aids etc. – the next gen-
eration of wealth-creating consumer products

[Treleavan, 1983]

It is interesting to note that the same desire for smart consumer electronics motivated
the design of Java.

The Fifth Generation initiative sent fearful tremors through the corridors of power of
other members of the G7, the world’s richest nations. The reaction was reasonable
enough. Expert systems seemed to be the reward of AI research and the Japanese had
a reputation of exploiting the inventions of other nations. National industries: ship-
building, automobile manufacture and consumer electronics had crumbled under
intense Japanese competition. Feigenbaum and McCorduck [1984] fuelled paranoia
with their enthusiasm for knowledge engineering, portraying MITI’s objective as a
bid for world domination in information technology. As a reflex reaction to the Japa-
nese threat, beleaguered governments initiated national and multinational research
programs to channel research funds into information technology.

During the ten-year period of the project, MITI spent more than 50 billion yen (over
$300 million). The research institute set up to direct the project, ICOT (Institute for
New Computer Technology), had almost 200 researchers seconded from collaborat-
ing computer manufacturers such as Fujitsu, Hitachi, Mitsubishi and NEC. At any
one time, there were about 100 researchers at ICOT, almost all under the age of 35.
About 75 non-Japanese researchers from twelve countries visited ICOT for short
periods and seven worked at the institute for one or more years.

At the outset, some believed the Japanese endeavor was doomed to fail because of the
initial choice of Prolog as the machine programming language. A retrospective ra-
tionale for this design decision is presented in this chapter in a somewhat anecdotal
form, since this is the nature of faith. As such, arguments cannot be expected to be
irreproachable, original, or even consistent.

2.1 Architecture and Design

The problems of computer design are indicated by Lampson [1983]:

The designer usually finds himself floundering in a sea of possibili-
ties, unclear about how one choice will limit his freedom to make
other choices, or affect the size and performance of the entire sys-
tem, or even any major part of it; much more important is to avoid
choosing a terrible way, and to have clear division of responsibili-
ties among the parts.
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At the height of the Precisionist Movement (Section 1.10), that a machine designed
for knowledge-based applications might be radically different from previous ma-
chines, was readily argued:

Algorithmic procedures, such as Gaussian Elimination, are proce-
dures about which properties such as efficiency and correctness
can be proved mathematically. In contrast, artificial intelligence is
mainly concerned with empirical procedures such as those required
to drive from Palo Alto to Boston. In general, empirical procedures
make use of empirical knowledge and require interaction with the
physical world.

[Hewitt, 1984]

It was argued that AI computations involve intensive memory accesses rather than
ALU (arithmetic and logic unit) operations. The characteristics of symbolic process-
ing are very different from numerical requirements for which conventional von Neu-
mann computers were designed:

Von Neumann machines being sequential, are inadequate vehicles
on which to base the development of large-scale artificial intelli-
gence systems. We need architectures that are inherently parallel
and sufficiently general to meet the requirements of distributed
systems.

[Hewitt, 1984]

The US was beginning to invest heavily in parallel machines hoping to steal a march
over the Soviets.

Any radical departure from the status quo has to be designed:
... anyone who devises a course of action intended to change an
existing state of affairs to a preferred one must engage in design ...
Design distinguishes the artificial from the natural sciences.

[Simon, 1981]

Architecture is the science and art of designing buildings and ships. The development
of the IBM 7030 (known as STRETCH) computer extended the reference of the term
architecture beyond buildings and ships to computers. In definition, Brooks [1962]
suggests:

Computer architecture, like any other architecture, is the art of
determining the needs of the user of a structure and then designing
it to meet those needs as effectively as possible within economic
and technological constraints.

The goal of STRETCH was to produce a machine with 100 times the performance of
the IBM 704. Only seven STRETCH machines were made but the technology devel-
oped was used in the IBM 7090 and 7094. The view of computer design as architec-
ture was consolidated in experiences with the IBM System/360, a family of upwardly
compatible computers. Computer architects accepted that to be commercially suc-
cessful, designs must be able to survive developments in hardware components, soft-
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ware technology and application characteristics. Commercial and industrial custom-
ers are resistant to revolutionary change with every new feature because of the cost.

The problems of design are so similar across engineering disciplines that design the-
ory has emerged as a discipline in its own right. The characterization of building
design has been discussed at length [e.g., March, 1976]. Attempts to automate design
processes have produced new models of design couched in the terminology of com-
puter science and AI [Mostow, 1985; Coyne 1988; Mitchell, 1990]. Large software
systems are described in terms of architecture. There is a trade-off between software
and hardware. Software can be implemented in hardware with a gain in speed but
with a loss of flexibility.

In the realm of numerical applications, it appeared that when it comes to performing
highly specialized computations then, dollar for dollar, a tailor made computer could
easily outstrip the biggest mainframe. Despite the noted affinity of main frames for
numerical calculation a homemade computer, the Dubners’ machine [Devlin, 1987]
at the time of the article held several world records for natural number computation.
The components of this machine, built by a father and son team in the US, cost
around $1000. According to Devlin, this machine had found: the largest known pal-
indromic prime (the same number read from left to right or right to left); the largest
prime of the form n!+1; the largest known Euclidean prime (prime-factorial plus 1)
and several other world records of a similar nature. For what it did, the Dubners’
machine was claimed at the time to be only ten times slower than the fastest Cray of
the day and the equal of anything that came out of IBM. This encourages the idea that
specialized hardware might be appropriate in certain applications.

The same conclusion was to be drawn from computer chess. Progress in computer
chess was initially slow. Chess programs of the 1970s became extremely complicated
with various tricks and heuristics for pruning the search tree. The first significant
increase in performance came in dedicated hardware with Belle [Condon and Thomp-
son, 1982]. Belle used custom designed integrated circuits to implement move gen-
eration and position evaluation. On a scale where the average chess player is rated at
a 1000 and the world champion at 2750, Belle's rating was 2250. In 1987, Hitech
became the first chess computer to defeat a grandmaster [Berliner, 1989]. It ranked
among the top 800 players. A team of CMU graduate students created Deep Thought
which using two processors had a performance rating of 2450. It could examine
750 000 positions per second to a depth of 10 ply. Sponsored by IBM, Deep Thought
2 achieved a rating of 2600 in 1993 putting it in the top 100 players. In 1996, its suc-
cessor, Deep Blue, won a game from the world chess champion, Kasparov. Kasparov
won the match 4-2. Deep Blue uses 32 power PC2 chips to search two billion posi-
tions of the game tree per second to a depth of 14 ply. Kasparov – for some the great-
est ever chess player – can evaluate no more than three positions per second. In a
historic rematch in June1997, Deep Blue beat Kasparov 3.5 games to 2.5.

2.2 Design as Evolution

Popper [1972] likens the development of science to a Darwinian evolutionary process
in the sense of continually eliminating errors. As the precision of scientific experi-
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ment increases with advances in technology, gaps between theory and experiment
appear. Theory evolves to compensate for the discrepancies. Applying these ideas of
evolution to the design process, a design begins with a problem. A tentative solution
is proposed that constitutes an hypothesis or conjecture. How the initial design is
arrived at is not dealt with by Popper’s theory. The hypothesis is tested against obser-
vation and is modified to eliminate errors thus producing a new hypothesis.

Despite attempts to the contrary, testing is the way most computer programs are de-
veloped. For software design, the method is called the RUDE cycle. The acronym
describes the stages of development:

• Run the current version of the system.
• Understand the observed behavior.
• Debug the underlying algorithm to eliminate undesired behavioral characteris-

tics.
• Edit the program to introduce absent but desired characteristics.
As with Popper's theory, how the current version is arrived at is not dealt with by the
method.

The computer architecture that has dominated since the mid-1940s is permanently
associated with name of the Hungarian born mathematician von Neumann. The origin
of the key component of the architecture, the stored program, is controversial. The
idea appeared in a widely distributed report containing the blueprint for Edvac [von
Neumann, 1945]. Edvac was the successor to Eniac, the first electronic computer
built at the University of Pennsylvania. Eniac was not a stored program machine and
von Neumann became a consultant to the project after the machine had been built.

Eniac established flashing lights as the outward sign of computer activity that is still a
distinguishing feature of supercomputers (cf. Thinking Machines CM5). The big
problem with Eniac was that it was difficult to program. The system of plugs and
cables used for programming could take several days to program. This led the Uni-
versity of Pennsylvania team to the realization of the speed advantages of storing the
program in the computer memory [Eckert, 1945]. Both Wilkes [1968], and Metropo-
lis and Worlton [1980] insist that Eckert and Mauchly, the principal designers of
Eniac, conceived the idea of stored program during development.

Somewhat earlier, Babbage had been aware of the possibility and potential impor-
tance of his Analytic Engine generating its own programs in the form of punched
cards. He viewed this as a good means of reducing program bugs. It is the ability to
calculate store addresses that is characteristic of the modern computer. Babbage is
claimed to be the inventor of addressable memory, stored programs and conditional
jumps [Bromley, 1987]. The von Neumann architecture was the first computer model
that provided a foundation for both technological and programming language evolu-
tion. The stored-program concept is an engineering approximation to the theoretical
universal Turing machine [Turing, 1936].

The early development of programming languages can be understood as the progres-
sive automation of actions that were previously manual or explicit in the stored pro-
gram machine. Early programs were written in binary. The introduction of simple
input and output devices made input in octal possible. The next step allowed mne-
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monic codes that were mechanically translated to binary. Nevertheless, users were
responsible for every detail of the store allocation. By the early 1950s this burden was
transferred to macrocodes and assembly languages [Metropolis et al., 1990].

The introduction of Fortran [Backus et al., 1957] brought great simplification to the
task of programming numerical applications. Fortran (FORmula TRANslation) was
not revolutionary but a distillation of previous attempts to raise the level of program-
ming. It was introduced:

to enable the programmer to specify a numerical procedure using a
concise language like that of mathematics and obtain automatically
from this specification an efficient (machine language) program to
carry out the procedure

[Backus et al., 1957]

Amongst other disagreeable features, Fortran is responsible for the convention of
writing programming language names in upper case letters. Backus, one of the prin-
cipal language designers, made it clear that the motivating factor behind the language
was not the beauty of programming in a mathematical notation but economics [Wex-
elblat, 1981]. Debugging, the process of finding and fixing errors was thought to
account for up to 50% of a computer’s use. Faultfinding was not considered an eco-
nomic use of what, at the time, was an expensive and exclusive resource. Fortran was
predicted to reduce program development time to less than one-fifth of what it had
been.

The store allocation policy used right up to Fortran77 was static: all identifiers are
bound to fixed storage locations. This has three limitations:

• the size of data must be known at compile time;
• no procedure can be recursive since all activations use the same location;
• data structures cannot be created dynamically.

These restrictions were to some extent overcome by the block-structured languages
Algol-58 and Atlas Autocode by allocating data storage on the procedure-calling
stack. An activation record or frame is pushed onto the call stack as each procedure is
called and popped when it returns. In 1978, Backus [1978] suggested that the von
Neumann architecture dictated the structural identity of programming languages. A
program variable is an abstraction of a store location. Assignment statements reflect
the underlying fetching and storing operations. Control statements, alternation and
repetition, reflect test and jump instructions.

The evolution of processors over the years has followed a pattern familiar from the
evolution of biological species. Processors became bigger with more complex ma-
chine instructions. Patterson and Dietzel [1980] called complex instruction set com-
puters, Ciscs. This evolution came about partly to provide language and operating
system support and partly because of the marketing strategy of upward compatibility.
To ensure brand loyalty, a new processor should have all the functional capabilities of
its predecessors and more. This allowed software written for the previous model to be
run on later models. This philosophy was pioneered by IBM 360 series main frames
and later exemplified by the Motorola 68x and Intel x86 microprocessor series.
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2.3 Design as Co-evolution

Shannon [1950a; 1950b] proposed that the principles acquired from mastering games,
like chess, were applicable to other areas of human intelligence such as language
translation, logical deduction, strategic decision making in military operations and the
design of electronic circuits. In the last of these, Shannon’s foresight has been stag-
geringly successful. The detailed design of VLSI chip layout is now so complex that
it would be impossible without CAD (Computer Aided Design). New models of
computer are designed using software running on previous models. It is said that the
Apple Macintosh was designed on a Cray and that the Cray was designed on an Ap-
ple Macintosh. This self-feeding spiral is partly responsible for the rapid evolution of
computer technology.

An examination of the genealogy of programming languages reveals the nature of
language design. Each successive language transfers new and more difficult cognitive
skills from the programmer to the compiler and runtime system. As one shifts from
one generation of language to the next, tasks that once required intellectual attention
are reduced to algorithms that can be routinely and safely assigned to software and
sometimes hardware.

The evolution of programming languages and hardware can be seen as co-evolution
with developments in one driving development in the other. An early architecture to
give hardware support for Algol’s stacks was the Burroughs’ 5000/6000 series. Using
the stack for passing and returning parameters led computer architects to extend the
von Neumann instruction set and registers to support such operations. The frame
register of a machine is reflected in the scope of variables in block structured impera-
tive languages. The influence of stacks even extends to the program design method-
ology. Top-down refinement abstracts the hierarchical structure of procedure and
function calls [Dijkstra, 1972].

During the 1960s, many large software development efforts met with severe difficul-
ties. Backus [1978] referred to this, later, as the software crisis. Computer system
deliveries were typically late, exceeded budget and produced unreliable products
[Brooks, 1975]. This tradition had been established by one of the first commercial
computers, Univac. Univac was delivered to the US Census Bureau 15 months late
and considerably over budget. This experience is typical of the situation with civil
architecture: compare for example the Anglo-French Channel Tunnel.

Indiscriminate transfer of control emerged as one culprit for the software crisis and
the finger of blame was pointed at goto statements [Dijkstra, 1968c]. This led to calls
for an engineering approach to the production of software. Bohm and Jacopini [1966]
demonstrated that all programs could be written with only three control structures:
sequence, selection and repetition. There followed an avalanche of research activity
that resulted in the paradigm of structured programming, a disciplined approach to
writing clear, demonstrably correct programs. Knuth [1974] demonstrated structured
programming with goto statements.

A much earlier software crisis had led Babbage to devise the Analytic Engine. Errors
in mathematical tables produced by human calculators prompted the search for more
reliable mechanical means of calculation. Babbage dreamed that logarithm tables
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could be computed by machine. More recently, the software used to control the 114
computers in the AT&T long-distance telephone network was held up as proof of the
possibility of highly complex, yet flawless software. In January 1985 this Titanic
system failed. Callers got busy signals and businesses dependent on communication
descended into chaos. American Airlines claimed to have lost two thirds of its
300 000 daily calls. The malfunction was due to an error in one of two million lines
of computer code. The error was introduced during an upgrade to reduce the time
between dialing and ringing. A Peter Principle seems to apply in that demand for
sophisticated software expands to exceed the limit by which it can be reliably pro-
duced.

The structured programming paradigm was intimately related with the programming
language Algol. The term Algol-like language is testament to the dependence of a
family of programming languages on a common ancestor. The main novelty of the
family is the reservation of space for local variables on the function call stack. This
implementation detail was reflected in the language in the abstraction of modular
design. Modular design gives rise to variable scope and recursive procedure calls.
The relationship between stacks and the paradigm is an incestuous one. Samelson and
Bauer [1959] described how a stack store could be used to support the compilation of
programs written in Algol-like languages.

The almost total replacement of assembly language by high-level languages laid the
burden of use of the instruction set mainly on the compiler writer. Empirical investi-
gations showed that compilers do not exploit most of the instructions provided by
Ciscs. Alexander and Wortman [1975], for example, finds 10 instructions accounting
for 80% of the code and 30 instruction for 99% of the code. Compiler writers prefer
simpler architectures where the number of available choices is fewer and uniform.

Given the rapid development of technology, longer times for design and verification
lead to situations where processors and compilers become obsolete before production.
The inherent complexity of VLSI chips, measured in numbers of transistors, places
formidable demands on debugging [Frank and Sproull, 1981]. Patterson and Dietzel
[1980] claim that more cost-effective processors can be realized with simpler and
more regular instruction sets, Riscs (Reduced Instruction Set Computers). Not only
does regularity assist the compiler, it assists in algorithmic computer-aided design
and verification. Purely on aesthetic grounds, an architecture that can be designed,
implemented, and verified relatively automatically is appealing.

2.4 Design as Theorem

If an architecture survives a large, thorough testing regime then confidence in its
design increases. Dijkstra [1972] captured the asymmetry of testing:

Program testing can be used to show the presence of bugs but
never show their absence.

Any number of tests will not guarantee the correctness but a single unsuccessful test
will deny it. This is the same as Popper’s objection to Logical Positivism. Many
schemes continue to be proposed for debugging and increasing confidence in the
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correctness of hardware and software. Some deal with programming methodology
and others with algebraic proofs that a program does what the specification intends of
it. Formal specifications of AI architectures are rare. Craig [1991] gives a formal
specification of blackboard architectures in the Z specification language.

Turing [1949] wrote a short paper in which he discussed the germinal ideas underly-
ing what is now called program verification. Naur [1966] proposed an informal sys-
tem for proving the correctness of programs. (Naur was editor of the Algol report and
co-inventor with Backus of the BNF, a Post Calculus for specifying programming
language syntax.) Better known, Floyd’s [1967a] method associates a predicate with
each arc in a flowchart. The flowchart was the earliest methodology for program
design. Floyd introduced one of the most important components of program verifica-
tion, the loop invariant. A loop invariant is a proposition that if true immediately
before the start of a loop is true immediately after exiting. Floyd’s work inspired
Hoare [1969] to develop the first formal logic for proving partial correctness proper-
ties of sequential programs. The premises and conclusions of Hoare logics are triples
consisting of a precondition, a program statement and a postcondition. Hoare [1988]
claims that Turing was an early advocate of the assertional method:

On June 24, 1950 at a conference in Cambridge, he [Turing] gave
a short talk entitled, "Checking a Large Routine" which explains
the idea with great clarity. "How can one check a large routine in
the sense of making sure that it’s right? In order that the man who
checks may not have too difficult a task, the programmer should
make a number of definite assertions which can be checked indi-
vidually, and from which the correctness of the whole program
easily follows."

That pre- and post-conditions could be used to synthesize a program came out of the
work of Dijkstra [1975,1976]. To this end, Dijkstra contributed the weakest precon-
dition for a given statement and postcondition. The problem of determining loop
invariants has prevented a successful completion of this proposal. Hoare [1982] sug-
gested:

A specification is a predicate describing all observations of a com-
plex system ... Specifications of complex systems can be constructed
from specifications of their components by connectives in the
Predicate Calculus … A program is just a predicate expressed us-
ing a restricted subset of connectives, codified in a programming
language.

Hehner [1984] presents a semantics of programming in which programs themselves
are predicates manipulated according to the rules of predicate calculus.

Dijkstra [1968a; 1968b; 1971] was one of the first to emphasize the principle of sepa-
ration of concerns and levels of abstraction in dealing with the complexity of soft-
ware design. The principle, regarded as common sense, advocates partitioning con-
cerns into strongly related components and then focusing on each component in iso-
lation. Parnas pioneered most of the subsequent work on software design. Parnas
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[1972a] introduced the notion of module specification. A complex software system
may be divided into simpler components called modules. Modules are software frag-
ments that may be a collection of routines, a collection of data, a collection of type
definitions or a mixture of all these. The benefit of modularity is that it allows the
principle of the separation of concerns to be applied in two phases. One phase deals
with individual modules in isolation and the other the integration of the modules.
Two relations between modules define the software architecture. One relation is M1
uses M2 for example when M1 calls a routine in M2. The other relation is comprises
when modules are composed of other modules. This relation is naturally a hierarchy.
Hierarchical relations are easier to understand than nonhierarchical ones. Hierarchy
defines the system through levels of abstraction.

The set of services that each module provides to other modules that use it is called its
interface. A clear distinction between the interface and the implementation of a mod-
ule supports the separation of concerns. Parnas [1972b] introduced the concept of
information hiding. An interface may be viewed as a contract between a module and
its clients. As long as the interface remains fixed, the implementation may be
changed arbitrarily. The crucial aspect of the interface specification is what is visible
to clients and what is hidden. The hidden information is encapsulated in the imple-
mentation.

Britton, Parker, and Parnas [1981] discuss abstract interfaces for devices. Modules
can be categorized according to what their interface makes visible. Procedural ab-
stractions encapsulate algorithms. They were one of the first categories used in soft-
ware design. A library is a module containing a number of related procedural ab-
stractions. It might seem that routines for random number generation are a library.
They are different in that successive calls with the same parameters do not return the
same result. Random number generators have encapsulated data, the seed that is only
visible to the routines. Modules that exhibit such state are called abstract objects.
With a shared data module, the structure of the data is visible to all clients. An ab-
stract data type is a module that offers to supply data only through a number of visi-
ble routines. This hides the structure of the data and allows it to be implemented in
different ways.

Dijkstra and Parnas were leading figures in the foundation of software engineering.
Software engineering proposes that complex software systems can be developed in
the same way that engineers design cars, bridges, ships, airplanes and microproces-
sors. Engineering requires management, organization, tools, theories, methodologies
and techniques. Despite four technology generations, machine architecture did not
change very much. Microprocessors of the Fourth Generation were essentially in-
stances of the same von Neumann architecture used in the first valve computers.
Backus [1982] argued that the effective use of VLSI was limited by current computer
architecture:

The key problem caused by the original [von Neumann] design of
computers is in the connection between the CPU and the store.
Since huge contents of the store must pass, one word at a time,
through this connection to the CPU and back, one might call this
the von Neumann bottleneck.
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Decreasing costs of hardware and increasingly available custom designed silicon
chips make radically different hardware designs, such as neural nets, possible.

VLSI is a successful example of parallelism. The success is due in part to a hierarchy
of interfaces for composing circuits: composing transistors to form memory units;
composing functional units to form pipelined processors. Pipelining is a technique
whereby multiple instructions are executed in parallel. A designer composing tran-
sistors has to be concerned with physical issues such as parasitic capacitance. A de-
signer putting together functional units of pipelined processors has to be concerned
with uninterrupted flows of instructions. Languages that give rise to fewer jump
statements have increased performance on pipelined processors. The CDC (Control
Data Corporation) 7600 was the first pipelined supercomputer.

Since the first working computer, architects have been striving to compose computers
that are more powerful by connecting many existing smaller ones. The first computer
from the Eckert-Mauchly Corporation (Eniac) had duplicate units to improve reli-
ability (it was composed of valves that were considered unreliable components).
Despite the innovation of VLSI, conventional machines were claimed to be reaching
the limits of their power [Bouknight et al., 1972]:

The turning away from conventional organization came in the mid-
dle 1960s, when the law of diminishing returns began to take effect
in the effort to increase the operational speed of a computer…
Electronic circuits are ultimately limited in the speed of operation
by the speed of light … and many of the circuits were already oper-
ating in the nanosecond [technological limit] range.

ILLIAC, a parallel array processor, was a result of the US Atomic Energy Commis-
sion’s encouragement to manufacturers to research "radical" machine architectures
[Hord, 1982].

Microprocessors, a product of Fourth Generation, seemed the ideal modules for
composing parallel architectures [Bell, 1985].

Multis are a new class of computer based on multiple microproces-
sors. The small size, low cost, and high performance of microproc-
essors allow design and construction of computer structures that
offer significant advantages in manufacture, price performance ra-
tio, and reliability over traditional computer families. Multis are
likely to be the basis for the next, the Fifth Generation of comput-
ers.

The Transputer [INMOS, 1988] was a processor especially designed to be such a
building block.
The immediate product of a design endeavor is a description of the artifact in some
symbolic language such as a chip layout diagram. Interfacing many existing smaller
designs forms the final design. Flip-flops can be composed from gates and shift reg-
isters from flip-flops. If these descriptions are thought of as inference rules in the
sense of Post Calculi, then computers can be thought of as theorems of a deductive
system. The same idea is used in the architecture of buildings [Mitchell, 1990]. Each
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rule dictates how shapes, standing for components or subsystems, combine in ways
that accomplish some useful end. For example, an arch consists of two columns and a
beam. Artifact designs are treated as expressions in languages specified by shape
grammars, known as artifact grammars. These grammars are specialized Post Cal-
culi.

Giloi [1983] proposed a classification scheme in which architectures are described by
a formal grammar. For example, an inference rule of the form:

operational principle hardware structure
computer architecture

specifies that a computer architecture can be formed from an operational principle
and hardware structure. The two rules:

dispatch driven control event driven control
operational principle operational principle

specify that operational principle is either dispatch driven control or event driven
control. Using the grammar, an architecture can be described by a parse tree of a
sentence. Giloi’s proposal suggests that to construct a comprehensive scheme it is first
necessary to classify architectural features. Unfortunately, the lack of independence
of concepts makes it less than useful for design purposes [Dasgupta, 1989].

The best known application of taxonomy is biology, where the development has a
long history dating back to Aristotle. The earliest and most frequently cited classifi-
cation incorporating parallel machines is Flynn [1966]. Flynn’s scheme is non hierar-
chic and consists of four categories:

• SISD – single instruction stream, single data stream;
• SIMD – single instruction stream, multiple data stream;
• MISD – multiple instruction stream, single data stream;
• MIMD – multiple instruction stream, multiple data stream.

Because the taxons span a wide range of computers, they cannot make any reasonably
accurate predications about the relative performance of SIMD and MIMD machines.

2.5 Design as Premise

The Japanese initiative was to be different from previous computer generations. At
the outset, it was to be driven from the top by knowledge-based applications. The
advantages that come from a goal directed approach to problem solving were appar-
ent in the Romantic Movement (Section 1.5). Top-down design is a natural way of
coping with design complexity. If interpretative knowledge can be used backwards,
the design can be derived from the specification. This form of reasoning, called ab-
duction, was identified by the American logician Peirce (co-discoverer of predicate
logic) as especially important. Reggia [1983] suggested its use in diagnostic expert
systems. Abductive inference allows one to infer Q as a possible explanation of P
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given P if Q. To be useful Q needs be consistent with other beliefs. In this way, the
design becomes a premise. Abduction is highly nonmonotonic and nondeterministic
and this reflects the difficulty in design.

To see how abductive design might be done, consider the requirement for a real-
time expert system for financial trading. (Thatcherism dominated the politics of the
1980s. The pursuit of profit was seen as an end in itself.) An essential feature of the
requirement is that it will be couched in financial language with the intention that
financial experts can evaluate it. In evaluating a design satisfying the requirements, it
is necessary to reason about attributes that are not immediately evident from a de-
scription of the design. For example, one attribute might be how quickly the system
can give advice in response to changes in the financial markets. Interpretative tech-
nological knowledge provides the mapping between symbols of the circuit diagram
and performance. The price performance ratio gives semantics to the design. For
example, if ECL (Emitter Coupled Logic) technology is used the cost per gate can be
estimated and gate delays will be of the order of nanoseconds. Breal [1900] intro-
duced the word semantics in the title of his book. It is one of a number of words de-
rived from the Greek semanio, to mean. Other examples: semiotic and semiology
refer to the relationship between signs and their meanings. Semantics refers to lin-
guistic meaning. There is substantial literature on semantics in mathematical logic
where it is known as model theory.

In October 1987, Black Monday was followed closely by Terrible Tuesday with
computer "program trading" systems metaphorically screaming Sell! Sell! Sell! In
"program trading" computers were programmed to issue sale demands when the Dow
Jones, Nikkei Dow, Hang Seng or some other index reached a predetermined level.
Economic commentators, eager to apportion blame, criticized computer systems for
lacking intelligence and causing spiraling sell-offs in a downward market. Most of
the programs were of the spreadsheet type on personal computers. Because of the
crash, commentators rashly complained that computers do not think as humans do
and artificial intelligence is technically impossible. As a basis for argument, the 1987
stock market crash is not entirely credible, since the Wall Street Crash of 1929 can
hardly be blamed on the lack of intelligence of computers. Program trading systems
in 1987, it seems, are already as intelligent as shareholders were in 1929. Indeed, it is
thanks to modern technology that the 1987 crash was not worse than it was. It was
reported that because of the unreliable and overloaded telephone exchanges share-
holders were not able to instruct their brokers to sell.

A large part of the problem in developing AI applications is to obtain a formal under-
standing of the requirements. Fahlman [1980] listed some basic computing needs of
AI researchers of the Precisionist Movement (Section 1.10).

AI programs tend to be very large ... any machine should have a
large virtual address space to insulate the researcher from having
to think about overlays. A 32-bit address space is comfortable for
the immediate future… Most AI programs burn a lot of cycles. If
your machine is slow and too heavily loaded, high-powered re-
searchers will be spending all their time waiting for something to
happen on their screens.... AI researchers spend most of their time
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editing and communicating with one another via computer mail.
First rate facilities for these activities should be provided.

Fahlman claimed that these requirements could be achieved by two architectures:
time sharing systems and the personal workstations connected by high-bandwidth
networks. This highlights the problem: there are many ways a specification may be
met. Abduction gives no guidance as to which may be better. Additionally, new ways
may be found during design and fabrication. Because abduction is nonmonotonic,
abductive design does not lend itself to the later acquisition of knowledge.

A more fundamental problem limits the rationality of decisions – the specification
may not be consistent. Some intended properties of a design can only be tested after
the system has been fabricated or at least prototyped. Rationality is bounded by con-
flicts in the desired goals and imperfect knowledge of relevant information. There
may be many performance indicators; one ubiquitous monitor is cost: cost of design,
cost of fabrication and cost of distribution. Simon [1982] formulated the notion of
bounded rationality. It is usually not possible to optimize all performance criteria
simultaneously and some compromise is necessary. Simon called this compromise,
satisficing.

Top-down design has a danger that it may be too specific. A design that would satisfy
the requirements for financial investment may not be suitable for assisting VLSI
layout. Different expert system applications require different inference engines and
knowledge representation schemes [Chandrasekaran, 1983; 1985a; 1985b]. Interpre-
tative knowledge is generally insufficient for producing designs from specifications.

2.6 Design as Paradigm

The software crisis was used to promote novel programming languages. Kuhn [1970]
sees crises as the spur to the progress of science. Kuhn suggests that the establish-
ment is uncritical of the paradigm in which it works and resists any changes to it.
When the paradigm proves inadequate, a crisis arises. It is the young and ambitious
that promote allegiance to some new paradigm. With the acceptance of the new para-
digm, these pioneers go on to form the new establishment. For example, in logic
programming Kowalski [1979], taking a lead from Wirth [1976] and expert systems,
promoted the separation of logic and control. In contrast, a subsequent religion, ob-
ject orientation, promotes the integration of data and algorithm.

The word paradigm derives from the Greek paradeigma, showing side by side. In
ancient Greece, it described goods displayed for sale in the market place. From this, it
acquired the meaning of sample, example and pattern. In science, it took on the
meaning of a standard example for testing theories. For example, planetary motion in
the solar system is used to test principles of mechanics. Because particular examples
were associated with particular theories that explained them, the word paradigm was
transferred to the principles of the theory. This is the interpretation of paradigm used
by Kuhn [1970] in The Structure of Scientific Revolution. The paradigms of AI reflect
the movements described in Chapter 1. Before the Japanese Initiative, design by pro-
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gramming language paradigm dominated all attempts to break away from design by
evolution of the von Neumann architecture.

Algol-like programming languages were thought inadequate for the potential paral-
lelism in AI applications:

Existing languages, which were designed for existing architectures,
tend to be similarly inadequate. Languages designed for von Neu-
mann machines are inherently sequential. Extensions of these re-
strict the amount of parallelism unnecessarily.

[Hewitt, 1984]

Landin’s work in the mid-1960s [1964, 1965, 1966] was significant in the develop-
ment of functional programming. Landin [1964] recognized that Algol-like languages
could be approximated by syntactically sugared versions of Church’s lambda calcu-
lus. Assignment could be approximated by substitution. Landin’s thesis was that Al-
gol and all past, present and future languages can be approximated by lambda calcu-
lus in one form or another. Landin designed an abstract stack based machine (SECD)
for executing lambda calculus programs. Four stacks keep track of the syntactic
structure of lambda expressions and the location of the leftmost redex (reducible
expression).

Hoare’s [1982] proposal that a program is a predicate is not consistent with Landin’s
interpretation of a program as a lambda term. Under the Brouer, Heyting and Kol-
mogorov interpretation, a closed lambda term represents the proof of a proposition
and a proposition represents a type. Backus [1978] called for the functional style of
programming, because of its simplicity, (sounder) mathematical foundations and
reputedly higher expressive power. He argued that many so called architectures
which support high-level languages are not driven by real language needs. Languages
motivating the architecture were themselves a product of the architecture.

The first language specifically for AI was IPL, a list processing language, developed
by Newell and Simon to write the Logic Theorist, the early heuristic theorem prover
described in Chapter 1. IPL and the Logic Theorist were introduced at the first AI
conference at Dartmouth College, of which McCarthy was co-organizer. The authors
had no compiler and translated it into machine code by hand. It was an assembly level
set of macros for list processing on a hypothetical stack machine (an abstract ma-
chine). Operations of push and pop were part of IPL.

FLPL (Fortran compiled List Processing Language) was McCarthy’s first attempt to
clean up the "untidiness of IPL". It was implemented on an IBM 704 [Gelerntner et
al.., 1960]. With McCarthy’s second attempt, Lisp (LISt Processing) [McCarthy,
1960], pairs rather than lists, were chosen as the primitive data type. From pairs, both
lists and trees can be constructed. During the next few years, McCarthy refined the
language. The computational model of Lisp is, like Algol, stack based. It is often
claimed that lambda calculus was the theoretical basis of Lisp, but this appears not to
be the case [McCarthy, 1978]. McCarthy’s original motivation for developing Lisp
was the need for list processing in artificial intelligence research. The presence of
pragmatic features such as sequencing and assignment in Lisp had, doubtless, much
to do with Fortran in which FLPL was written. The impact of lambda calculus on
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early Lisp development was minimal; it was only later that purged versions appeared,
in particular Scheme [Abelson et al., 1985] and ML [Milner et al., 1990].

While array data structures are the dual of repetition, recursive data structures, such
as lists, are the dual of recursion. A stack discipline is insufficient for dynamic data
structures because their lifetime generally exceeds the lifetime of the procedure that
created them [e.g., Wirth and Jensen, 1974]. Dynamic data structures require storage
in a heap. Abstractly, the state of a computation that uses dynamic data structures can
be understood as a rooted, connected, directed graph. The call stack acts as roots for
the graph. As computation proceeds, the graph changes by the addition and deletion
of vertices and edges. In this process some portions of the graph become discon-
nected from the roots. These disconnected subgraphs are known as garbage. Garbage
collection is an unavoidable evil of computer languages that employ dynamic data
structures. The earliest forms of store management placed the responsibility for allo-
cation and reclamation on the programmer. Programmed garbage collection was error
prone, if not burdensome and many languages, including Lisp, added automatic allo-
cation and reclamation in a runtime system. One early variation of Algol, Algol-W
included automatic garbage collection.

Although AI applications can be developed in Fortran, the higher level of Lisp with
automatic garbage collection made programming easier and opened up implementa-
tion to less mechanically inclined researchers. Lisp provided powerful metalevel
facilities for manipulating programs. Because Lisp programs are syntactically the
same as Lisp data structures, i.e., nested pairs, and the eval primitive had the quality
of a universal Turing machine, Lisp was used as a metaprogramming language. Rey-
nolds [1972] showed (in terms of lambda calculus) that it is impossible for a system
to support itself in the same language it is written in. Languages have to resort to
primitives to express some part of reflection. Languages that can represent programs
as data make it natural to bootstrap new languages or control by metaprogramming.
This makes it possible to solve complex problems by designing flexible problem or
user-oriented programming languages. These can be implemented with only a small
amount of effort. A tower of metalevels is an integral part of the meta-object protocol
[Kiczales et al., 1991].

The utility of metalanguage in expert systems has been noted in many places [e.g.,
Davis and Buchanan, 1977; Davis, 1980; Bundy and Welham, 1981; Clancey, 1983;
Aiello and Levi, 1984]. It had been argued that metalevel approaches, which separate
control knowledge from domain knowledge, provide possibilities for an abstract
expert system architecture that can be tailored to the problem at hand. A metalevel
approach allows independent variation of control knowledge and domain knowledge.
The separation permits domain knowledge to be completely declarative and this al-
lows its use in different reasoning strategies, for example forward or backward
chaining. Another application is the possible transformation of search intensive pro-
grams to search free programs using metacontrol knowledge.

One notable application of Lisp was Saint [Slagle, 1963]. Saint (Symbolic Automatic
INTegrator) was an heuristic problem solver for first year university calculus prob-
lems. While differentiation can easily be expressed as an algorithm, integration can-
not [Moses, 1967]. Several inference rules are available for symbolic integration (for
example integration by parts and long division) that split the integrand into a sum of
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expressions that can be integrated separately. In first year MIT student examinations,
Saint scored an A, a grade somewhat better than the average student. Saint evolved
into Macsyma, an expert system for physicists and engineers to assist symbolic ma-
nipulation of mathematical expressions. Macsyma was, at one time, the largest sym-
bol manipulation system.

Lisp programs like Macsyma, which consists of 230 KB of compiled code, need large
virtual memories. The exclusive use of dynamically configured data structures makes
an automatic storage mechanism with efficient garbage collection vital. Complaints
about the speed of Lisp were met by specialized hardware. The earliest examples of
hardware support for a high-level language were DEC’s PDP-6 and its successors.
The half-word and stack instructions were developed with Lisp in mind. In general,
tag operations; stack operations and garbage collection present opportunities for
hardware support. Proprietary Symbolics and Xerox Lisp workstations are epitomes of
what can be achieved with a language paradigm. These machines came fully
equipped with powerful AI application development environments, for example
Loops, Kee, and Art. Such machines satisfied niche markets that required an AI pro-
gramming language with computation speed that timesharing systems could not de-
liver. Language specific hardware all gave added support to the central role of Lisp
for AI applications.

Kay [1993] was typical of the feelings about Lisp:
 ... there were deep flaws in its logical foundations … its most im-
portant components – such as lambda expressions, quotes and
conds – were not functions at all …

Kay’s criticism would have been more accurate if he had concentrated his attack on
name binding. Different interpretations led to a proliferation of incompatible versions
of Lisp. Applications developed on one manufacturer’s compiler would not run on
another. A standardization meeting was convened at MIT for all interested parties
including the Lisp workstation vendors. These manufacturers had large investments
in software. Symbolics had recently acquired Macsyma, the algebraic manipulation
application developed at MIT. Macsyma was considered a beautiful collection of
algebraic manipulation algorithms coded extremely badly; the code was reputed to be
unintelligible. It was alleged that Symbolics did not understand the algorithms but
they had the source code in MacLisp. Xerox was in a similar situation, their worksta-
tion environment was written largely in Lisp. It was imperative for both manufactur-
ers to protect their investments. The outcome of the meeting, chaired by Steele, was
Common Lisp. The standard attempted to be catholic enough to support everyone’s
needs, but where it did not it put all manufacturers at equal disadvantage.

The Sapir–Whorf hypothesis asserts that it is possible for someone working in a
natural language to imagine thoughts that cannot be translated or understood in an-
other language.  This is contrary to Church’s thesis that any computation can be real-
ized by partial recursive functions [Rogers, 1967]. Examples of computational lan-
guages have been proposed by Church [1936], Kleene [1936], Markov [Markov,
1954], Post [1936], Smullyan [1956] and Turing [1936]. An often cited, but errone-
ous [Pullham, 1991], example of the Sapir–Whorf hypothesis is that Inuit languages
have many words for different types of snow.  A weak form of Sapir–Whorf hy-
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pothesis is that different languages make some forms of problem decomposition and
hence solution more natural than others.

2.7 Impressionist Design

According to Roberts [1973], in addition to inventing predicate logic, in the 1890s
Peirce rediscovered the semantic nets of the Shastric Sanskrit. Semantic nets could be
implemented reasonably efficiently in Lisp using property lists. Fahlman’s (MIT)
thesis [1979] proposed hardware architecture to support semantic networks. The
architecture provides a tight coupling between a semantic network and parallel infer-
ence routines. In the Impressionist Movement (Section 1.8), when frame based repre-
sentations of knowledge became popular, Lisp was naturally used as the language in
which to implement them. Proprietary Lisp environments, Loops, Kee and Art, pro-
vided direct support for frames.

The concept of frames found counterparts in Algol [Stefik and Bobrow, 1986]. In
particular, Simula, from the Norwegian Computer Center, was an extension of Algol
that introduced class and instance concepts under the names of activities and proc-
esses. Although classes were introduced into Algol to describe the life cycles of the
objects of discrete event simulation, encapsulation was later recognized as a general
principle of program design [Dahl, 1972]. The idea that data structures and the op-
erations on them should be encapsulated forms the concept of abstract data-type.

Sketchpad [Sutherland, 1963] was the first interactive graphics system and although it
was not explicitly frame-based it boasted similar features. Sketchpad described
drawings in terms of “master drawing” and instances. Control and dynamics were
provided by constraints and represented in graphical form. Sketchpad had inheritance
hierarchies and data structures with embedded references to procedures. According to
Kay [1972], Sutherland's achievement in inventing interactive computer graphics was
stunning:

It was the first system that had a window, the first system that had
icons, certainly the first system to do all its interactions through the
display itself. And for a small number of people in this community,
this system was like seeing a glimpse of heaven.

While a graduate student, Kay [1972, 1993] developed Flex, an Eulerized version of
Simula for writing the operating system of the first portable computer, the Dynabook
(dynamic book). Kay's undergraduate studies in biology influenced the design. Bio-
logical evolution had developed one solution to the problem of managing complexity.
Biological systems maintain control by confining processes and data in self contained
cells. These cells act on each other by sending “messages” carried by chemical mes-
sengers. The receipt of a message from other cells activates the processes within
cells. The cell membrane and the nucleus protect its data, DNA, from access by un-
toward agents. Kay noted an operating system could be broken down into component
parts similar to cells.

A purer form of Flex appeared in Smalltalk [Ingalls, 1978] under the funding of the
Xerox Office Workstation Project [Kay, 1972; 1993]:
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While Simula can be seen as an attempt to add object-oriented
features to strongly typed Algol 60, Smalltalk can be viewed as an
attempt to use the dynamic, loosely typed features of Lisp, but with
methods and objects replacing functions and S-expressions.

[Norvig, 1992]

Kay was a founder member of the Learning Research Group at Xerox PARC. The
workstation project was intended to create the iconic illusion of office organization,
now so familiar in the Apple Macintosh and Microsoft Windows. Papert influenced
Kay’s idea that a workstation could be made easier to use by taking inspiration from
child psychology. Papert reasoned that Piaget's development of child mentalities
could be accelerated if abstract things such as geometry, could be made more con-
crete. The programming language Logo took advantage of young children's ability to
manipulate objects – in this case a turtle – to perform abstract geometry. The cell-like
programming units in Flex came to be called "objects" in Smalltalk.

The Alto, a Xerox graphics workstation, was the first hardware platform for Small-
talk. The Alto was designed for the paperless office but the more powerful Dorado
soon succeeded it. The Dorado was designed to support both Interlisp and Smalltalk.
Evidence of Lisp is apparent in the deeper structure of Smalltalk. Steele [1976a;
1976b] demonstrated how object-oriented programming can be done in Lisp using
lambda. The MIT Lisp Group developed the idea in Flavors to support multiple in-
heritance [Moon, 1986]. Flavor was a slang word for type. In New Flavors, Symbol-
ics produced a more efficient implementation and abandoned the message-passing
paradigm. Xerox, continued the development with Common Loops. What remains is a
set of macros, functions and data types for object-oriented programming that have
been incorporated into Common Lisp under the name of CLOS.

Neither the Alto nor Dorado was sold commercially. The first commercially available
object-oriented hardware architecture was the Intel iAPX432. The iAPX432 was a
Cisc based symmetric multiprocessor machine designed by Intel. In contrast, Soar,
Smalltalk on A Risc project, [Ungar and Patterson, 1987] places much of the burden
of managing objects on software. Ungar and Patterson claim that much can be learned
from what appear to be smart ideas in hardware that, in practice, do not contribute to
a more efficient machine. They describe the salutary tale of the computer architect’s
trap:

… each idea was clever ... each idea made a particular operation
much faster ... not one idea significantly improved total perform-
ance! … The primary impact of clever ideas was to increase the
difficulty of building the machine and thus lengthen the develop-
ment cycle.

Lessons learnt from Soar were incorporated in the general purpose Sparc processor.

The semantics of object-oriented languages, like Smalltalk, is not altogether clear
with different proponents emphasizing different features. Some propose abstract data
types; for others message passing is considered a central tenet; for others it is hierar-
chy and program reuse. The problems of semantic nets and frames carry over to ob-
ject-oriented programming, almost without change. Object-oriented programming
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leaves the programmer with difficult decisions to make regarding the epistemological
status of the properties so encoded and their associated inheritance paths. The use of
objects to code knowledge contrasts with the metalevel separation of control knowl-
edge and object knowledge as advanced by expert systems. With metalevel architec-
ture, it was argued that greater flexibility could be achieved by this separation. This
distinction may be seen in the arguments for relational databases [Codd, 1970; Codd
and Date 1974] as opposed to CODASYL [1978]. Criticism of the anarchy of network
databases promoted the use of the relational model.

Lisp machines and Smalltalk machines provide powerful integrated program devel-
opment environments. These are persuasive features of any system irrespective of the
programming language. By the late 1960s, Lisp was almost exclusively the imple-
mentation language of choice for AI applications. With Lisp, novice students spent a
considerable time developing pattern matchers for metaprogramming production
systems. The first effective pattern matching and string manipulation language,
COMIT was developed at MIT in the late 1950s. COMIT allowed substrings to be
identified by their content rather than position. Newell and Simon [1963] designed a
pattern directed production rule interpreter called PSG (Production System version G)
specifically for use in simulating human problem solving. The psychological model
of long and short memory inspired it. A PSG program consisted of an initial database

and a collection of condition action rules, C ⇒ A, with an action A entailing one or
more effects on the database. The interpreter tries rules in some order until one is
found whose condition is satisfied by the database. The body of a rule is then exe-
cuted which usually causes modification of the data. In this computational model,
rules cannot call each other directly but only indirectly by placing appropriate triggers
in the database.

Contrasting this method of behavior invocation with Lisp function calls gives pro-
duction rules some advantage. With the looser coupling between invocations, incre-
mentally acquired knowledge can be incorporated into the problem solving process.
This is true even when the knowledge is fragmentary and heuristic. It was from this
behavior that the exploratory, prototyping, approach to software development largely
grew. PSG directly led to the influential OPS series of rule-based (cognitive model-
ing) languages [Forgy, 1981; 1982] from Carnegie Mellon University.

Production systems were used for the development of the first expert systems, like
Xcon. The first version of OPS was implemented to test claims of the superiority of
production systems over other representational schemes. Later versions were specifi-
cally adapted for the development of Xcon. DEC (Digital Equipment Corporation)
started building Xcon, its first expert system in 1978 to configure PDP-11 computers.
The first two attempts to build the system using Lisp and Algol-like programming
languages were dismal failures. It was too difficult to manage the scale and complex-
ity of the combinations of thousands of components in a procedural way. The first
successful attempt was written in OPS5.

The OPS5 environment provided developers the capability to handle Xcon’s scale and
complexity. Additional flexibility came from a mechanism for focusing control on
specific groups of rules. To prevent programmers from getting carried away with this
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feature, DEC developed a methodology, Rime (R1 Implicit Made Explicit), to control
use of the mechanism. (R1 was the original name of Xcon.) The methodology is
enforced by a toolset called Sear. Sear includes a graphical problem-solving method
definer with its own OPS5 metalanguage. Using the metalevel language, Sear pro-
grammers can select a template for an appropriate control structure. Sear then com-
piles the OPS5 code for the desired control.

The use of production system languages has been restricted to expert systems. Not all
human problem-solving methods are easily represented by forward chaining rules.
For example, the principal of least commitment heuristic for constraint solving is
naturally backward chaining. In production systems, condition testing with large
antecedents is an inherently inefficient computational process and has serious impli-
cations for time-critical applications. Specialized algorithms such as Rete are used to
overcome this difficulty. In addition, production rules have no intrinsic structure that
makes for easier management of large knowledge bases. Most expert systems start as
a prototype, with fewer than a hundred rules. Some grow to more realistic systems,
with up to 1000 rules. Few expert systems become much bigger than this because of
the difficulty of management.

Among the special architectures designed to speed execution of production systems is
Dado [Stolfo and Miranker, 1986]. Dado consists of distributed processors connected
as a binary tree by an underlying interprocessor communication network. The internal
nodes are used to store production rules and as parts of the working memory. The
root is used to select a matching rule and to broadcast resulting changes to the entire
tree. Hardware support is provided for the Rete pattern-matching algorithm.

An advance on production rules came with the planning languages [Bobrow and
Raphael, 1974]. These languages were designed specifically as vehicles to support
top-down problem solving. The most notable, yet unimplemented, of these was Plan-
ner [Hewitt, 1969; 1972]. In the design of Planner, Hewitt was influenced by Floyd’s
[1967b] (so called) multivalued functions as a method of specifying search. Floyd
[1967b] used chronological backtracking of Golomb and Baumbert [1965] to evaluate
multivalued functions (recursively defined directed relations). It is interesting that
Hewitt presented Planner at the same session of IJCAI 69 (International Joint Confer-
ence on Artificial Intelligence 1969) that Green presented QA3. The chair of the
session was (Alan) Robinson.

Sussmann, Winograd, and Charniak [1971] were keen to use Planner but got so fed
up with waiting for Hewitt to implement the language, they implemented their own
cut-down version. MicroPlanner [Sussmann, Winograd and Charniak, 1971] was
programmed in Lisp allowing access to Lisp constructs as primitives. A MicroPlanner
program consisted of a database of assertions and a set of conditionals.  An assertion
is a tuple represented as a Lisp list. Assertions denote facts; conditionals are proce-
dures or subroutines represented in the form P if Q. Searches are initiated by a goal,
an assertion to be proved. A goal may be proved directly from a matching fact in the
database or indirectly using a conditional as a procedure: to prove P prove Q. Be-
cause of nondeterminism, this sets up an automatic backward chaining mechanism to
search the database in the style of [Floyd, 1967b]. This contrasted with the forward
chaining of production systems.
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Unlike production systems, the pattern matching of Planner was local to the goal;
goals directly invoked other goals just like procedure calls. Goals took the form of a
template containing variables. These variables could become instantiated during the
search as envisaged in Green’s QA3 [Green, 1969]. Assertions from the database or
the consequent of conditionals are chosen in turn by their ability to match the goal
template. Variables in a template are instantiated by any tuple they correspond to, in
the pattern they are required to match. Whereas production rules separate data exami-
nation from modification, in Planner the two are integrated. This can be compared
with the difference between Herbrand procedures and resolution in theorem proving.
Planner provided additional primitives that allowed assertions and conditionals to be
created and destroyed dynamically.

MicroPlanner was perceived as providing built-in facilities that everyone was to need
for the next generation of AI systems. A notable application written in MicroPlanner
was Shrdlu [Winograd, 1973], a natural language interface to the blocks microworld.
The name Shrdlu came from ETAIONSHRDLU – the order of letters according to
their frequency in English. Linotype printers stored their fonts in this order rather
than alphabetically. Winograd was a student at MIT where for a period much research
was focused on robot planners for the Blocks World. The Blocks World was a micro-
cosm that consisted of a table with various toy blocks on it. The problem for a robot
was to scan the scene, work out the relationship between and manipulate blocks to
achieve some goal, such as building an arch. Winograd's Shrdlu made strong use of
Planner's implicit attempted exhaustive search. Search failure was used as a proce-
dural device to imitate negation. A justification for this was the nonmonotonic
closed-world assumption [Reiter, 1980]. This is the hypothesis that the locally avail-
able knowledge is complete. Relational database systems make use of the closed-
world hypothesis: if an entry is not found in a relational table, it is assumed false.
Winograd [1973] claimed that:

One basic viewpoint underlying the model is that all language use
can be thought of as a way of activating procedures in the hearer.
We can think of any utterance as a program – one that indirectly
causes a set of operations to be carried out within the hearer's cog-
nitive system.

This behavioral model is a natural product of the Impressionist Movement (Section
1.8). The operations of parsing, forming internal representations and reasoning about
the model world were so deeply intertwined that critics charged the program with not
contributing any insight into natural language processing or AI.

The initial euphoria created by Planner and Shrdlu quickly evaporated when basic
deficiencies of the language became manifest. Backtracking search in MicroPlanner
turned out to be hard to control and led to inefficiency. Planner’s search fails to be
exhaustive because of bottomless branches in depth-first search. To compound the
problem, the language provided no support, beyond the conditional, for modular
programming. This was, in part, intentional since it meant that programs could be
developed incrementally in the exploratory style of production systems. Unfortu-
nately, this led to programs that were difficult to understand and thus debug.
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2.8 Classical Design

MicroPlanner effects another level of organization on top of Lisp. Because of the
difficulties of controlling backtracking, Planner did not prove to be a replacement for
Lisp. It only served to further establish Lisp as pre-eminent for metaprogramming.
An effective method for the control of failure driven loops appeared with the much-
criticized cut of Prolog. The Prolog (PROgrammation en LOGique) implementation
was reported by Colmerauer and Roussel [1992] from Marseilles and evangelized by
Kowalski [1974; 1979]. (Allegedly, Roussel’s wife suggested the name Prolog.) The
similarities of Planner and Prolog are readily apparent [Dowson, 1984] and much of
the procedural terminology of Logic Programming such as goal, head and body of a
clause seems to originate from Planner.

Abelson et al [1985] claims that logic programming grew out of a European attempt
to understand Hewitt's impenetrable Ph.D. thesis. McCarthy [1988] expresses a simi-
lar sentiment:

MicroPlanner was a rather unsystematic collection of tools, unlike
Prolog, a language that relies on one mathematically tractable kind
of logic programming, but the main idea is the same. If one uses a
restricted class of sentences, the so-called Horn clauses, then it is
possible to use a restricted form of logical deduction.

Colmerauer and Roussel [1992] deny this:

While attending an IJCAI convention in September 1971 with Jean
Trudel, we met Robert Kowalski again and heard a lecture by Terry
Winograd on natural language processing. The fact that he did not
use a unified formalism left us puzzled. It was at this time we
learned of the existence of Carl Hewitt’s programming language,
Planner [Hewitt, 1969]. The lack of formalization of this language,
our ignorance of Lisp and, above all, the fact that we were abso-
lutely devoted to logic meant that this work had little influence on
our later research.

Colmerauer's interest stemmed from natural language translation and in particular
two-level grammars [Cohen, 1988]. The natural language group at Marseilles led by
Colmerauer had developed a pattern matching, rewrite system called Q for natural
language understanding. Between 1970 and 1972 this was extended to a French lan-
guage query answering system, QA. The natural language processing was done in Q
while the semantic part was written in predicate logic and used an SL resolution theo-
rem prover [Kuehner and Kowalski, 1972] as its inference engine.

Prolog was born out of the motivation to find one system in which both natural lan-
guage and semantic processing could be united. Despite linear input resolution's
stack-like functioning, analogous to procedure calling in standard languages, SL had
general computations (ancestor resolution and factoring) that seemed unnecessary for
the natural language examples on which it was required to work. For efficiency, a
restriction of SL resolution was adopted which fitted well with Colmerauer's prefer-
ence for Floyd's [1967] method for managing nondeterministic search:
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A draconian decision was made: at the cost of incompleteness, we
chose linear resolution with unification only between the heads of
clauses ... Robert Kowalski’s contribution was to single out the
concept of the "Horn Clause" which legitimized our principal her-
esy

[Colmerauer and Roussel, 1992]

The relationship between linear input resolution and Horn clauses had been estab-
lished earlier by Kuehner [1972] in his SNL theorem prover. With the exception of
factoring, Kuehner’s theorem prover is what came to be known as SLD (Selective,
Linear, Definite) [Apt and van Emden, 1982]. Hill [1974] was the first to show that
factoring was unnecessary for Horn clauses. Hill called the refinement LUSH for
linear unrestricted selection of Horn Clauses.

The first version of Prolog was written in Algol-W. Boyer and Moore [1972] wrote
an improved version in Fortran using the implementation technique of structure
sharing. Colmerauer’s group’s purchase of an IBM 360 equipped with virtual mem-
ory dictated the switch to Fortran. It is interesting that the explanation of structure
sharing appeared in the same issue of Machine Intelligence as Kuehner's SNL Horn
clause theorem prover. As described in Chapter 1, apart from factoring, SNL is a
proof system for Horn clauses.

The query answering part of Prolog was similar to Green's [1969] QA3. A list of
nonresolvable predicates in the goal was used to record the variable bindings. Green
[1969] presented his paper on Theorem proving by resolution as a basis for question-
answering systems at the same Machine Intelligence Workshop in 1968 at which both
Absys and Planner were announced. Absys stood for Aberdeen System and with the
authors’ hindsight, it was the first Logic Programming language [Foster and Elcock,
1969]. Absys later influenced Hewitt’s Planner. Absys grew out of a desire to remove
overspecification from procedural programming. Resolution appeared as a system for
solving sets of equations after the fashion of Herbrand, thus separating complimen-
tary literal elimination from unification that Robinson had so neatly sewn together.
This route was later pursued by Colmerauer with Prolog II [Colmerauer, 1982] and
developed into constraint logic programming [Jaffar and Maher, 1994].

Negation appeared in Absys as it does in Planner as negation by failure but it was
interpreted using program completions rather than the closed world assumption.
Clark [1978] later developed a completion semantic in the context of Prolog. Because
resolution was effected by equation solving, negation as failure in Absys pre-empted
constructive negation [Chan, 1988]. Prolog's longevity compared with Planner can be
likened to the longevity of Lisp compared with IPL. Lisp was a rationalization of IPL
that later was purified with lambda calculus. Although not central to Lisp, lambda
calculus gave it credibility by providing underlying semantics. Prolog was a rationali-
zation of Planner purified by Horn clause calculus. Smullyan [1956a] had shown that
Horn clauses and modus ponens was a sufficient mechanism for all possible calcula-
tions (Turing complete). Kowalski and van Emden [1974] provided a fixed point
semantics for Horn clause logic. The minimal model semantics was discovered earlier
by Smullyan [1956b]. Negation as failure in Prolog extended the expressive power of
the language. Semantics for negation as failure were given in terms of nonmonotonic
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logic [Apt, 1994]. For the Yale shooting problem (Section 1.7) identified by Hanks
and McDermott [1986], both circumscription [McCarthy, 1980] and default logic
[Reiter, 1980] give unintuitive inferences. Negation as failure gives the commonsense
result [Evans, 1989]. Negation as failure has recently been identified as a form of
argumentation [Dung, 1993]. Such reconstructions deepened understanding of both
problems and solutions of nonmonotonic logic.

The Prolog phenomenon, perhaps, can be ascribed to at least three features. First, the
semantics provided by Horn clause logic. Second, relatively efficient, Lisp-inspired
(stack-based) implementations by Pereira et al. [1979] and subsequently Warren
[1983]. Finally and much underrated in its contribution, is the provision of the cut
operator to curb the onerous effects of unbridled depth first search which bedeviled
Planner. In the Algol-W version of Prolog, there were four primitives to control the
backtracking that appeared at the end of clauses. Planner had similar control primi-
tives but they were not simple to use. In the later Fortran version, Colmerauer’s re-
duction of the four to a single operator (cut) produced an enormous simplification:

Not only could the programmer reduce the search space according
to purely pragmatic requirements he could also process negation in
a way, which, although simplified and reductive in semantics, was
extremely useful in most common types of programming.

[Colmerauer and Roussel, 1992]

2.9 Logic Machines

Before the Japanese initiative was announced, special purpose machines had been
successfully built to support Algol-like languages. Special purpose machines had also
been built to support Lisp and Smalltalk. Lisp workstations had been commercially
profitable in providing unique development environments for AI applications. A
special purpose workstation to support the latest AI language, Prolog, was a very
natural consideration. The controversy and dogmas surrounding the paradigms of AI
were all too clear in the SIGART Special Issue on Knowledge Representation
[Brachmann and Smith, 1980]. The issue presented the results of an extensive survey
on knowledge representation. The variety of answers to fundamental questions was
notable. Logic Programming was promoted, in this issue, as the perfect arbiter be-
tween the declarative and the procedural [Kowalski, 1978] schism. With Logic Pro-
gramming, Kowalski [1974] gave semantic credibility to Prolog by identifying the
goal-directed procedural problem solver of Planner with the theoretical Horn clause
SNL theorem prover of Kuehner [1972]. Hewitt had previously interpreted Planner
both procedurally, goal driven, and as a theorem prover as witness the title of his
paper and thesis [Hewitt 1969; 1972]. The assertions and conditionals of Planner

correspond to Horn clauses written in the logically equivalent form P←Q. One dif-
ference between Planner and Prolog is that assertions are separate from conditionals
in a database style in Planner. This allows sophisticated indexing optimizations for
retrieving assertions.
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The advantages of Planner [Sussmann and McDermott, 1972] apply equally well to
Prolog. Both Planner and Prolog provide the same compact notation for encoding
depth-first search. The gains of chronological backtracking are appealing. First, it
provides a search mechanism generating alternatives one at a time. Second, it pro-
vides a mechanism for eradicating the consequences of alternatives later found to fail
and so economizes on space. Thirdly, in negation by failure, by attempting exhaustive
search, deduction effects a nonmonotonic form of negation.

One of the biggest applications that the Japanese Initiative had to consider was natu-
ral language processing. An advanced knowledge-based system would be expected to
converse with its user in Japanese. Japanese is a regionally localized natural language
but the lingua franca of commerce is (obtusely) English, so automatic translation
between Japanese and English was a high priority application. Prolog was born out of
natural language processing and so seemed an ideal candidate for a specialized ma-
chine.

The driving force of natural language processing for Prolog ensured that the Fortran
version had the essential ingredients of a good metaprogramming language, uniform-
ity of the program (clauses) and data (the terms) and a metacall predicate (reflexiv-
ity):

One of the missing features of the preliminary Prolog was a
mechanism that could compute a term that could then be taken as a
literal to be resolved. This is an essential function needed for
metaprogramming such as a command interpreter; this feature is
very easy to implement from a syntactic point of view. In any event,
a variable denoting a term can play the role of a literal.

[Colmerauer and Roussel, 1992]

The Prolog metacall corresponds to the Lisp eval primitive. Prolog proved to be a
better vehicle for metaprogramming than Lisp because of the additional attribute of
pattern matching that unification offers.

The Fortran version of Prolog was widely distributed. Copies went to Leuven, Buda-
pest, Waterloo (Canada) and Edinburgh. Prolog spread by people taking copies from
Marseilles and its satellites.

Prolog was not really distributed; rather it escaped and multiplied

[Colmerauer and Roussel, 1992].

In 1976 Furukawa, who became deputy director of the Japanese Fifth Generation
Computer System project (FGCS), was on a visit to SRI (Stanford Research Insti-
tute). From there he took a copy of Marseilles Prolog back to Japan. Before FGCS
project started, more than a hundred Japanese researchers had been involved in dis-
cussions on new information processing technology. Out of the discussion, a proposal
emerged to build a new software culture on languages for knowledge-based systems.
The two candidates were Lisp and Prolog.

Lisp was a product of the USA. Although European, Prolog had not yet been com-
mercially exploited. Furukawa was impressed by the metaprogramming capability:
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I wrote a program to solve the Rubik cube problem in DEC-10
Prolog. It ran efficiently and solved the problem in a relatively
short time (around 20 seconds). It is a kind of expert system in
which the inference engine is a Production System realized effi-
ciently by a tail-recursive Prolog program. From this experience, I
became convinced that Prolog was THE language for knowledge
information processing.

The simplicity of the Prolog metacircular interpreter is one of the most impressive
features of the language. Reynolds [1972] coined the term metacircular for a lambda
calculus interpreter that defines each feature of the defined language using the corre-
sponding feature of the defining language.

One problem with meta-interpretation is that each level of interpretation gives extra
overhead making multilayered meta-interpretation intolerably slow. The program
transformation technique of partial evaluation [Futamura, 1971] offered a way of
alleviating this drawback. This technique combines a meta-interpreter and an object
program into a more efficient specialized program. The technique works by propa-
gating constant values through the program, unfolding goals and branching at alter-
native clauses. Partial evaluation can be used to flatten the layers of meta-
interpretation so that the overheads of multiply embedded interpreters are reduced.
While applicable to any language, partial evaluation is particularly suitable for lan-
guages like Planner and Prolog that use pattern matching.

Partial evaluation provides a common framework for discussing program transforma-
tion, program control, programming language interpreters, compilers and a way for
both compiling and automatically constructing compilers from interpreters. The result
of partial evaluation of an inference engine with respect to the inference rules is a
specialized inference engine just for those rules. Partial evaluation removes some
inefficiency of meta-interpretation for designing problem solvers and application-
specific programming languages. Prolog proved itself on small database applications,
problem solving, expert systems, natural language parsing and compiler writing.
However, to become established it had to overcome the inertia of Lisp. (The inertia of
Fortran in numerical applications and Cobol (Common Business Oriented Language)
in commercial applications still bedevils computer science.) Only in the 1990s did
commercial sales of Prolog outstrip those of Lisp.

The idea of building a logic machine is aesthetically appealing and very much older
than the Japanese initiative. In Plato’s time, geometers speculated about machines that
could support formal derivations in logic. According to Gardner [1982], the inventor
of the world’s first logic machine was the British diplomat Charles Stanhope (1753-
1816), third Earl of Stanhope. Stanhope was a prolific inventor. His logic machine, in
the form of a square slide rule, was known as the Stanhope Demonstrator. It demon-
strated symbolically the inferences that follow from syllogisms in a manner similar to
Venn diagrams, which the Earl’s invention anticipated. A description of the machine
was not published until 63 years after Stanhope’s death. Another of his inventions, an
improved calculator, may have had influence on computer science as two of them
came into the possession of Babbage.
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Boole [1847] introduced the first reasonably comprehensive and approximately cor-
rect logic based on an artificial language in his book The Mathematical Analysis of
Logic. Boole’s logic, which was guided by the algebra of arithmetic, subsumed the
main parts of Aristotellian logic. The Megarian Stoics [Mates, 1953] appeared to
have a comprehensive prepositional logic in the third century BC. The truth tables
were rediscovered in fragments of Stoic writing by the American philosopher Peirce
(1839-1914). Although Boole's logic fell short of today’s propositional logic, other
19th century mathematicians, particularly De Morgan and Jevons, corrected the er-
rors. Jevons proposed solving logical equations by reducing formulas to conjunctive
normal form. The tedium of solving equations by this method led Jevons to the idea
of performing the operations mechanically. Jevons' exhibited a logical machine
[Jevons, 1870] at the Royal Society. The machine was called the Logical Piano, be-
cause, as the name suggests, it took the physical form of a piano. Premises and op-
erations are fed into the machine by pressing keys. The machine also has a vertical
board with slits and a collection of moving plates on which the results are displayed.
The Logical Piano (now on display in the Oxford Museum of History) was in some
ways a predecessor of the desktop computer.

Jevons’ machine was based on a 'blackboard' method. Logical alphabets of problems
(involving up to six variables) are written on an ordinary school blackboard with their
constituents (conjunctive normal form) listed below. Premises of specific problems
are written on the free portion of the board and are compared with the corresponding
column of constituents. Corresponding contradictory combinations are erased. Post
[1921] and Wittgenstein [1922] independently introduced Truth Tables as a method
of calculation for propositional logic.

2.10 Hindsight

The Fifth Generation Initiative was brought together in the early 1980s to bring to-
gether two promising ideas. The first was the logic programming language Prolog.
Prolog was claimed to be a declarative language. This meant that the order of evalua-
tion was not significant to the result of the computation. This suggested it was suit-
able for the second ingredient, parallel processing, which could provide the computa-
tional power to tackle the huge computational needs that knowledge-based systems
require. The ten-year program began in earnest in 1982 with an initial funding for
five years. ICOT was organized into three semi-autonomous groups. One group was
responsible for applications, including particularly natural language processing. A
second group was responsible for the parallel hardware design. The third group, the
broker between the two designed extensions to Prolog to facilitate the writing of
operating systems and AI applications programs. These groups, however, did not
interact well in the early years of the project, resulting in several parallel Prolog ma-
chines and language designs that did not fit them [Chikayama, 1993].

The Fifth Generation MITI project ended its ten-year research project with an inter-
national conference. Although some of the hardware, PSI (Personal Sequential Infer-
ence) machines and PIM (Parallel Inference Machines), were donated to researchers
it was not commercialized. A PIM machine was used recently to solve a remarkable
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number of open problems in quasi group theory. The final version of the machine
appeared on the verge of achieving 108 logical inferences per second. The software
for the project was made public domain but, unfortunately, it only runs on PSI and
PIM machines. Funding for a further three years was made available for scaled down
project to port the software to Unix machines. Much of the FGCS project was con-
cerned from the beginning with hardware and in particular Cisc microprocessor de-
sign. This went against the grain of the Risc thinking that appeared in the 1980s. The
hardware part of the Fifth Generation Initiative was closed down and the researchers
who were hired for the lifetime of the project were returned to their native companies
(in Japan at the time, workers were seldom laid off).

ICOT’s "Prolog Machines" (PSI and PIM) turned out to be slow, expensive, and
clumsy in comparison with modern workstations or modern parallel supercomputers.
The high cost of designing special purpose languagebased workstations with low-
volume sales means that manufacturers are reluctant to redesign them to take account
of more recent developments. Old special-purpose technology compares unfavorably
with the most recent general-purpose technology. For example, Lisp runs faster on
Riscs than it does on outdated Xerox and Symbolics workstations. Such language-
based machines have only survived because of the luxury proprietary programming
environments they provide.

In addition to Risc processors, computer technology developed very rapidly in other
directions during the ten years of the Japanese project. Two significant changes in the
marketplace in the 1980s made it relatively easy for small companies to enter com-
puter manufacturing. Upward compatible microprocessor families made it easy to
assemble computers from off-the-shelf components [Bell, 1985]. High-level lan-
guages meant almost an elimination of assembler programming and so reduced the
need for object code compatibility. With ANSI standardization, C emerged as the
universal assembler language. The emergence of de facto standard operating systems,
such as DOS and Unix, lowered the cost and risk of bringing out new machines.
Desktop-machines give greater flexibility and are more cost effective than large
mainframes.

The principal design metric for the early advances in operating systems was efficient
use of processors. In the late eighties, the NSF (National Science Foundation) realized
that it could save money by creating just a few supercomputer centers and allowing
university researchers remote access over telephone lines. NSFNET was based on the
Internet Protocol developed for Arpanet. Arpanet was a computer network developed
for the US Department of Defense whose design metric was survival from military
attack. By dispersing the network over a wide area using a web of connections, the
system could continue functioning even when portions were destroyed. Significant in
the success of NSFNET was the release of 4.2 BSD Unix from the University of
California at Berkeley, which provided a set of system calls (sockets) giving pro-
grammers access to the Internet Protocols. NSFNET was so successful it soon be-
came saturated. The system was upgraded with faster telephone lines and node com-
puters but it too became saturated. The US’s information super highway project pro-
vided a further system upgrade.

When desktop computers became available, the same economics that prompted the
use of networks shifted the focus of attention. Centralizing storage and I/O devices
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could save money. Early workstations came equipped with Berkeley Unix, which
included Internet Protocol software. This readily adapted to local area networks. The
need to manage multiple resources connected by a network led to distributed operat-
ing systems. Multis (computers based on multiple microprocessors) have not yet
proved to be the basis for the next, the Fifth Generation, as Bell [1985] predicted.
Driven by economic considerations, distributed systems emerged as the de facto Fifth
Generation. Like previous generations, it was led by hardware advances.

Parallel machines have failed to make a big impact on commercial computer users
despite products having been available for some time. The market has collapsed and
most manufacturers have gone out of business. At its height, US federal government
funding fueled the market. Every National Supercomputer Center was provided with
the latest machine from the latest startup manufacturer. The end of the cold war put
an end to such lavish spending. An argument that has been put forward for the failure
is that different classes of architecture require radically different computational para-
digms. There is no obvious winner and it is almost impossible to move applications
from one class to another. With the evolution of pipelining into microprocessors, the
predicted demise of the von Neumann computing model was premature and improved
processor designs continued to extend the power of the architecture [Hennessy and
Patterson, 1990]. Amdahl [1967] foresaw this:

For over a decade, prophets have voiced the contention that the or-
ganization of a single computer has reached its limits and that truly
significant advances can be made only by interconnection of a
multiplicity of computers in such a manner as to permit co-
operative solution. Demonstration is made of the continued validity
of the single processor approach.

Amdahl’s law [1967] gives a pessimistic estimate of the speed-up that can be obtained
from parallelism. Assume that a program executes on a single processor in a time E.
If the dependence between subtasks is accounted for by some time, C, spent in com-
munication between the parts of the program, the total time for execution on N proc-
essors will be (C + E/N). The speed-up, the ratio of the execution time on a single
processor to execution time using N processors, reduces to N /(1 + N/E’) where E’ =
E/C. With increasing N, the asymptote, E’, is a constant. With large communication
costs, the speedup may even be less than unity. That communication cost is inde-
pendent of the number of processors is a dubious assumption and refinements of
Amdahl’s law are possible [Genlebe, 1989].

The quotation at the beginning of this Chapter suggests that a computer architect
requires breadth of knowledge of all areas of computer science: theory of computa-
tion, computer organization, operating systems, languages and applications. Deep
knowledge of all the fields in one individual is rare. What seems important to one
specialist is not usually important to another. Inadequate knowledge in many
branches of study and various kinds of learning in the ICOT research team was read-
ily admitted:

… when the research center [ICOT] was founded with some 30 re-
searchers in June 1982 nobody had concrete research plans. …
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Only a few had experience of any language systems or operating
systems

[Chikayama, 1993]

The companies collaborating in the Fifth Generation had little interest in the project.
For them, the Fifth Generation was a design exercise in apprentice training. Seconded
personnel were supposed to return to their parent companies after training but at the
end of the project, many researchers found positions in Japanese universities.
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Chapter 10

Agents and Robots

Civilization advances by extending the number of important
operations that we can perform without thinking about them.

AN Whitehead (1861–1947)

Stemming from several sources, the notion of a computational agent came to
prominence in the 1990s. The multiple parentage of the concept meant that there was
no clear definition as to what the terminology meant. The rapid growth of interest led
to many using the term as a buzzword in the hope of gaining a foothold on the
bandwagon. As this book has indicated, agents have been a common theme in the
sociology of artificial intelligence. At the 13th International Conference on
Distributed AI, Hewitt remarked that the question “what is an agent?” is as
embarrassing for the agent-based computing community as the question “what is
intelligence?” Underlying the development of the concept of agent is the move away
from computers as stand-alone systems that are used to model aspects of the world
towards being active participants in the world. One of the dictionary definitions of
agent is “a person or thing, which exerts power or has the power to act” and this sense
lies behind the use of the word in computing.

As Gelernter and Carriero [1992] and many others have noted, computing has
developed with the processing of data seen as paramount and the transmission of data
and results as secondary or superficial. AI systems used for problem solving or expert
systems illustrate this. They provide output when given input, the output reflecting
how a human would approach the same mental task. They do not attempt to interfere
with the world itself. This is left to humans. Such systems have a complete and closed
model of the world, working on the assumption that manipulating this model will
parallel manipulating the real world. This will work perfectly in real world situations
like game playing where strict rules are obeyed. It is not surprising that the playing of
games like chess has been one of the most successful applications of AI. However,
the capturing of uncertainty has been a major theme in moving beyond simple
microworlds like this. Systems are soon engulfed by the amount of information
needed and combinatorial explosion when every possible result of attempting an
action in the real world is considered.

10.1 Reactive Agents: Robots and Softbots

Concerns of this sort led Brooks [1991a] to challenge the Artificial Intelligence
community, claiming it had gone down a blind alley. Brooks was concerned with
building robots that could cope with ordinary physical environments [Brooks, 1986].
He wanted his robots to be robust, able to deal with inconsistency in sensor readings
and able to achieve a modicum of sensible behavior if the environment changed,
rather than fail and halt or engage in irrational behavior. His response to this
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challenge was to drop the good old-fashioned AI approach involving detailed
planning and knowledge representation and build robots that worked purely on
reaction to sensor input. He argued that this was how real animals worked (or, as he
put it, “Elephants don’t play chess” [Brooks, 1990]). This harks back to the
behavioral psychology, Section 1.6. Thus, an artificial intelligence should be
constructed by first building a base with animal-like behavior with simple reactive
rules and then adding to it layers of more intelligent control. Experiments with real
animals, for example [Arbib and Liaw, 1995], have been used to show that much
animal behavior can be accounted for by simple reactive mechanisms.

The lowest level of control of Brooks’ robots led them simply to avoid collision
(bearing in mind they had to exist in environments where other objects might be
moving) by sending appropriate messages to movement motors when the sensors
detected the approach of an object. The next level of control caused the robots to
move independently but aimlessly by sending messages to move and turn at random.
A level above this gave some direction to the movement, sending the robot towards
areas that its sensors detected had free space. Only at levels above this (which were
not included in Brooks’ original robots) would the robot store maps it had constructed
of its environment and plan movement around these maps. Each layer of control in
the robots worked independently of the higher layers. Higher levels could take control
from the lower levels by issuing instructions that the lower level messages be
ignored, but the lower levels would continue issuing the messages regardless. This
was called a subsumption architecture.

Agre and Chapman [1987] made a similar use of a purely reactive architecture in their
influential PENGI system. This system was designed to play an arcade computer
game involving moving an object in an environment where points may be gained by
reaching certain positions. Hostile moving objects have to be avoided and the player
may set other objects in motion. Unlike Brooks’ robots, the PENGI system was
working with an artificial and thus strictly limited world. The large numbers of
objects in this world, their unpredictable behavior and the time-dependent nature of
the game, meant that tackling the game in a way involving detailed modeling and
planning was unfeasible. Rather, the approach used was for the artificial player to
react immediately based on simple rules involving the immediate surroundings of the
manipulable object.

The most obvious aspect of the move of computing away from standalone systems is
the development of the Internet, making all connected machines one large distributed
system. The term agent has been associated with systems designed to work with the
Internet. Reading email or directly requesting the transfer of remote files, the Internet
is an infrastructure driven by human actions. Systems designed to explore the Internet
in order to discover information, or to filter email to reduce information overload
[Maes, 1994] are agents in a second dictionary sense of the word “ones entrusted with
the business of another”. Clearly such systems may be simple and we would resist
describing a mail filter that simply throws away all email not from a given list of
addresses as “intelligent”. Higher levels of intelligence might include making use of
some set of rules and an inference engine in order to make decisions, build user
models, learn and adapt in response to feedback and so on.
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The connection of these software agents with agents in the Brooks’ sense is argued by
Etzioni [Etzioni, 1993]. He suggests that a system operating in a real software
environment shared by other users faces much the same problems as a robot working
in a physical environment. These are: lack of complete knowledge of what the
environment contains; the need to be able to handle whatever is encountered in the
environment without failing; the dynamic nature of the environment; the ability of the
agent to change the environment. To emphasize the similarity with physical robots,
Etzioni uses the term softbot. The pragmatic convenience of softbots over robots for
agent research is noted. It is cheaper and quicker to build and experiment with
software artifacts rather than physical artifacts, but such experimentation is not
simply games-playing as it has obvious commercial potential [Tenenbaum, 1997].

10.2 A Simple Robot Program

As shown in Chapter 5, an actor can be represented by a system where (mutually)
recursive calls represent a continuation of a state. Single assignment variables and
terms can be interpreted as recursively defined messages.  Consider an input stream
connected to a sensor which converts messages to the single assignment form while
an output stream connected to an effector which converts values to commands to a
robot’s motors. A robot working in an environment may then be programmed. This
has been done with real robots by Nishiyama et al. [1998]. To demonstrate this,
consider a simple world consisting of a two-dimensional grid (similar to the tile world
[Pollack and Ringuette, 1990] that has been used as the basis for a number of agent
experiments). We have a robot situated in this world which can face one of the four
compass points. Squares in the grid are either clear or blocked and the robot may only
move to clear squares. The robot has one sensor that returns the message clear if the
square it is facing is clear, blocked otherwise. Its one effector may be sent the
messages move to move forward one square, clock to turn a quarter-turn clockwise
(without changing square) and anti to similarly turn anticlockwise.

The state of the robot will consist of the streams connected to the sensor and effector,
the direction it is facing and the x and y coordinate. Additionally, differences between
the square in which the robot is located and a goal square (positive if the robot is to
the south/west of the goal, negative if it is to the north/east) can be stored. The
program will simply cause the robot to move towards the goal square avoiding
blocked squares.

The algorithm may be represented by a finite state machine as in Table 10.2.1. Here
State 0 is the state the robot is in before making a move. Recalling that on a square
grid, two of the compass directions will be facing towards the goal location and two
away, States 2 and 4 represent the robot turning in the alternative direction to the goal
if its initial direction is blocked. If the second direction is also blocked, the double
turn after this to States 3 and 5 means the robot only returns the way it has entered a
square if all other adjoining squares are blocked. States 6 and 8 represent a robot,
which is not initially facing the goal turning to face it. States 7 and 9 represent it
turning back to the original direction if the new direction is blocked. If the original
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direction is also blocked, again it turns to the third facing, returning the way it came
only if that too is blocked.

Table 10.2.1 Finite state machine robot

State 0: If clear and facing goal: move forward, goto state 0.
If blocked and facing goal and a clockwise turn faces

goal: turn clockwise, goto state 2.
If blocked and facing goal and an anticlockwise turn

faces goal: turn anticlockwise, goto state 4.
If not facing goal and a clockwise turn faces goal: turn

clockwise, goto state 6.
If not facing goal and an anticlockwise turn faces goal:

turn anticlockwise, goto state 8.
State 1: If clear: move forward, goto state 0.

If blocked:goto state 0.
State 2: If clear: move forward, goto state 0.

If blocked:turn clockwise twice, goto state 3.
State 3: If clear: move forward, goto state 0.

If blocked: turn anticlockwise, goto state 1.
State 4: If clear: move forward, goto state 0.

If blocked: turn anticlockwise twice, goto state 5.
State 5: If clear: move forward, goto state 0.

If blocked: turn clockwise, goto state 1.
State 6: If clear: move forward, goto state 0.

If blocked: turn anticlockwise, goto state 7.
State 7: If clear: move forward, goto state 0.

If blocked: turn anticlockwise, goto state 3.
State 8: If clear: move forward, goto state 0.

If blocked: turn clockwise, goto state 9.
State 9: If clear: move forward, goto state 0.

If blocked: turn clockwise, goto state 5.
Note that in State 1, representing the robot returning the way it came, a check is made
to see whether the way is blocked and if so the robot returns to checking other
directions. This is because the robot program is intended to operate in a dynamic
environment, so the way may have become blocked since the robot moved from it
and other ways may become unblocked.

The code for this is tedious, but not complex:

robot0(north,Xd,Yd,[clear|S],E) :- Yd>=0
| E=[move|E1], Yd1:=Yd+1,

robot0(north,Xd,Yd1,S,E1).
robot0(south,Xd,Yd,[clear|S],E) :- Yd<0

| E=[move|E1], Yd1:=Yd-1,
robot0(south,Xd,Yd1,S,E1).
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robot0(east,Xd,Yd,[clear|S],E) :- Xd>=0
| E=[move|E1], Xd1:=Xd-1,

robot0(east,Xd1,Yd,S,E1).
robot0(west,Xd,Yd,[clear|S],E) :- Xd<0

| E=[move|E1], Xd1:=Xd+1,
robot0(west,Xd1,Yd,S,E1).

robot0(north,Xd,Yd,[block|S],E) :- Yd>=0, Xd>=0
| E=[clock|E1], robot2(east,Xd,Yd,S,E1).

robot0(south,Xd,Yd,[block|S],E) :- Yd<0, Xd<0
| E=[clock|E1], robot2(west,Xd,Yd,S,E1).

robot0(east,Xd,Yd,[block|S],E) :- Xd>=0, Yd<0
| E=[clock|E1], robot2(south,Xd,Yd,S,E1).

robot0(west,Xd,Yd,[block|S],E) :- Xd<0, Yd>=0
| E=[clock|E1], robot2(north,Xd,Yd,S,E1).

robot0(north,Xd,Yd,[block|S],E) :- Yd>=0, Xd<0
| E=[anti|E1], robot4(west,Xd,Yd,S,E1).

robot0(south,Xd,Yd,[block|S],E) :- Yd<0, Xd>=0
| E=[anti|E1], robot4(east,Xd,Yd,S,E1).

robot0(east,Xd,Yd,[block|S],E) :- Xd>=0, Yd>=0
| E=[anti|E1], robot4(north,Xd,Yd,S,E1).

robot0(west,Xd,Yd,[block|S],E) :- Xd<0, Yd<0
| E=[anti|E1], robot4(south,Xd,Yd,S,E1).

robot0(north,Xd,Yd,[_|S],E) :- Yd<0, Xd>=0
| E=[clock|E1], robot6(east,Xd,Yd,S,E1).

robot0(south,Xd,Yd,[_|S],E) :- Yd>=0, Xd<0
| E=[clock|E1], robot6(west,Xd,Yd,S,E1).

robot0(east,Xd,Yd,[_|S],E) :- Xd<0, Yd<0
| E=[clock|E1], robot6(south,Xd,Yd,S,E1).

robot0(west,Xd,Yd,[_|S],E) :- Xd>=0, Yd>=0
| E=[clock|E1], robot6(north,Xd,Yd,S,E1).

robot0(north,Xd,Yd,[_|S],E) :- Yd<0, Xd<0
| E=[anti|E1], robot8(west,Xd,Yd,S,E1).

robot0(south,Xd,Yd,[_|S],E) :- Yd>=0, Xd>=0
| E=[anti|E1], robot8(east,Xd,Yd,S,E1).

robot0(east,Xd,Yd,[_|S],E) :- Xd<0, Yd>=0
| E=[anti|E1], robot8(north,Xd,Yd,S,E1).

robot0(west,Xd,Yd,[_|S],E) :- Xd>=0, Yd<0
| E=[anti|E1], robot8(south,Xd,Yd,S,E1).

robot1(Face,Xd,Yd,[clear|S],E)
:- E=[move|E1], move(Face,Xd,Yd,Xd1,Yd1),

robot0(Face,Xd1,Yd1,S,E1).
robot1(Face,Xd,Yd,[block|S],E)

:- robot0(Face,Xd,Yd,[block|S],E).
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robot2(Face,Xd,Yd,[clear|S],E)
:- E=[move|E1], move(Face,Xd,Yd,Xd1,Yd1),

robot0(Face,Xd1,Yd1,S,E1).
robot2(Face,Xd,Yd,[block|S],E)

:- E=[clock,clock|E1], reverse(Face,Face1),
consume(S,S1),
robot3(Face1,Xd,Yd,S1,E1).

robot3(Face,Xd,Yd,[clear|S],E)
:- E=[move|E1], move(Face,Xd,Yd,Xd1,Yd1),

robot0(Face,Xd1,Yd1,S,E1).
robot3(Face,Xd,Yd,[blocked|S],E)

:- E=[anti|E1], anti(Face,Face1),
robot1(Face1,Xd,Yd,S,E).

robot4(Face,Xd,Yd,[clear|S],E)
:- E=[move|E1], move(Face,Xd,Yd,Xd1,Yd1),

robot0(Face,Xd1,Yd1,S,E1).
robot4(Face,Xd,Yd,[block|S],E)

:- E=[anti,anti|E1], reverse(Face,Face1),
consume(S,S1), robot5(Face1,Xd,Yd,S1,E1).

robot5(Face,Xd,Yd,[clear|S],E)
:- E=[move|E1], move(Face,Xd,Yd,Xd1,Yd1),

robot0(Face,Xd1,Yd1,S,E1).
robot5(Face,Xd,Yd,[blocked|S],E)

:- E=[clock|E1], clock(Face,Face1),
robot1(Face1,Xd,Yd,S,E).

robot6(Face,Xd,Yd,[clear|S],E)
:- E=[move|E1], move(Face,Xd,Yd,Xd1,Yd1),

robot0(Face,Xd1,Yd1,S,E1).
robot6(Face,Xd,Yd,[block|S],E)

:- E=[anti|E1], anti(Face,Face1),
robot7(Face1,Xd,Yd,S,E1).

robot7(Face,Xd,Yd,[clear|S],E)
:- E=[move|E1], move(Face,Xd,Yd,Xd1,Yd1),

robot0(Face,Xd1,Yd1,S,E1).
robot7(Face,Xd,Yd,[block|S],E)

:- E=[anti|E1], anti(Face,Face1), robot3(Face1,Xd,Yd,S,E1).

robot8(Face,Xd,Yd,[clear|S],E)
:- E=[move|E1], move(Face,Xd,Yd,Xd1,Yd1),

robot0(Face,Xd1,Yd1,S,E1).
robot8(Face,Xd,Yd,[block|S],E)

:- E=[clock|E1], clock(Face,Face1), robot9(Face1,Xd,Yd,S,E1).
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robot9(Face,Xd,Yd,[clear|S],E)
:- E=[move|E1], move(Face,Xd,Yd,Xd1,Yd1),

robot0(Face,Xd1,Yd1,S,E1).
robot9(Face,Xd,Yd,[block|S],E)

:- E=[clock|E1], clock(Face,Face1), robot5(Face1,Xd,Yd,S,E1).

consume([_|S],S1) :- S1=S.

move(north,Xd,Yd,Xd1,Yd1) :- Xd1=Xd, Yd1:=Yd-1.
move(south,Xd,Yd,Xd1,Yd1) :- Xd1=Xd, Yd1:=Yd+1.
move(east,Xd,Yd,Xd1,Yd1) :- Xd1:=Xd-1, Yd1=Yd.
move(west,Xd,Yd,Xd1,Yd1) :- Xd1:=Xd+1, Yd1=Yd.

clock(north,Face) :- Face=east.
clock(east,Face) :- Face=south.
clock(south,Face) :- Face=west.
clock(west,face) :- Face=north,

anti(north,Face) :- Face=west.
anti(west,Face) :- Face=south.
anti(south,Face) :- Face=east.
anti(east,Face) :- Face=north.

reverse(north,Face) :- Face=south.
reverse(south,Face) :- Face=north.
reverse(east,Face) :- Face=west.
reverse(west,Face) :- Face=east.

Stopping the robot from turning back the way it has come is necessary to prevent it
from reaching a situation where it is forced to move away from the goal because all
ways to it are blocked. But then, having moved one square away, it immediately
returns to the blocked square and repeats this until the blocks disappear. An initial
situation is shown in Figure 10.2.2 with the robot initially at <e,3> and facing west,
moving towards the goal at <b,1>. It will move to <d,3> and finding <c,3> blocked,
turn first south (entering State 4), then finding <d,2> blocked, turn north (State 5).
Finding <d,4> clear, it will move to <d,4> (returning to State 0). At this point, the
robot will turn again towards the goal (entering State 8) rather than proceed in the
clear direction in front of it. As it then faces blocked <c,4> it turns back north (State
9) and proceeds to <d,5>. It does this, rather than turn to face the goal in the way it
has come and returns to <d,3>. At <d,5> the process of turning west, finding the way
blocked and proceeding north is repeated, moving to <d,6>. At <d,6>, again it turns
west, this time the way is not blocked and it proceeds to <c,6>. At <c,6>, it is facing
towards the goal, so moves to <b,6>. Here the west direction is no longer facing
towards the goal, so it turns south (entering State 8) and finding the way clear
continues to move to the goal.
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The program as given, however, will not always avoid going into a loop (in this case
causing the robot actually traverse a loop of squares indefinitely). Consider the
arrangement in Figure 10.2.3.  Here the robot will proceed as before until it reaches
<d,4>. At this point, in State 9 facing north, it finds the way ahead blocked, so turns
east (entering State 5) and finding the way clear moves to <e,4>. At <e,4> it turns
south to face the goal and moves to <e,3>. Finding the way ahead blocked, it turns to
the alternative direction for the goal (State 2) and finding the way ahead clear moves
forward. It is now in an identical position to a previous state and unless there are any
changes in the blocks will continue to move around the four squares <d,3>, <d,4>,
<e,4> and <e,3>.

6
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4 n
3 n <R

2 n n
1 G

a b c d e f
Fig. 10.2.2 Initial state of robot and environment
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2 n n n
1 G

a b c d e f
Fig. 10.2.3 An arrangement which causes the robot to loop
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10.3 Reaction and Intelligence

In the case of the above robot, a more sophisticated set of rules could be devised to
enable it to correctly manoeuver around an obstacle to reach its goal. However,
another tactic could be to use a technique similar to simulated annealing [Kirkpatrick
et al., 1993]. In this technique an agent occasionally (using a random choice
mechanism) makes a move which according to its heuristics is not the best one
available. This enables it to escape from situations that are local but not global best
positions. Treating the concept of hill-climbing literally, a robot whose goal is to
move to the highest point on a landscape would have the heuristic that it generally
moves in whichever direction takes it upwards, but at random can make the
occasional downward move. Without such downward moves, it would stay put at the
top of a small hill once it reached it and never explore larger hills. Similarly in any
situation where an agent inhabits a world which is too complex for its simple
heuristics to bring it inevitably to its goal, some random antiheuristic behavior may
help. Such behavior can avoid it getting stuck in situations where rigidly obeying its
rules causes it to continually repeat a sequence of behavior without real progression.

Another approach for the agent would be to physically alter the environment. Imagine
a robot with a supply of pebbles, the ability to drop a pebble in a square, and the
ability to detect the presence of a pebble in a square (and possibly pick it up).
Periodically the robot drops a pebble on the square it is in. A robot entering a square
containing a pebble might choose the second best exit route on the grounds that
choosing the best exit route has simply led it returning to the same location.

In both these approaches, no attempt is made to model the world in which the robot
moves as part of its internal state and use this to reason about routes through the
world. (It may be argued that dropping pebbles is using the environment as its own
model.) Brooks proposed originally that such modeling and planning behavior would
exist as a higher level layer in his robots, though he became the champion of the
purely reactive approach. In practice, a layered approach [Müller, 1996; Chaib-Draa
and Levesque, 1996] combining reaction and planning has become common in
building agents. The balance of planning and reaction employed will depend on the
characteristics of the environment. In an environment which is largely static, planning
may be used generally, with a resort to reactive techniques only when changes render
the planning inaccurate. This enables an agent to get over the brittleness of a planning
system that can take no account at all of changes to the environment. As an analogy,
consider the case where one is driving one’s car along a route planned in advance. It
would be foolish to plan in advance for every possible roadblock that might occur. It
would be dangerous to have no way of reacting should the planned route be blocked
at some point. The usual approach taken to divert from the planned route and feel
one’s way using a sense of direction until a position of the planned route is found
again and the plan is resumed, is a mixture of planning and reaction. The fact that
while driving a car it is not always possible to stop, consult a map and replan the
route indicates the real-time constraints that might favor a reactive approach. It is
better to make a quick decision on which direction to take, even though that may not
turn out to have been the best one, than halt to ponder the decision and cause a pile-
up!
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The argument as to whether reactive systems are intelligent falls at the heart of the
question “what is intelligence?” Traditional artificial intelligence has tried to model
behavior which in a human we would regard as signs of high intelligence. Thus,
ability to play a good game of chess, or to solve logical puzzles is often considered
the sign of an intelligent person, indeed IQ tests are based on problem solving. A
computer system, which can solve puzzles or play games, is deemed intelligent on a
subjective basis because it seems to behave as a human would. Intensive media
comment on “computers becoming human” was generated by the first computer to
beat the world chess champion and was not dimmed by explanations of the fairly
simple nature of computer chess-playing algorithms. Similarly, fairly simple reactive
systems can look alive on a subjective human view. For example, a few rules of
attraction and repulsion have been used to model a system which can be viewed as an
animal risking approaching a waterhole while avoiding predators [Kearny, 1992]. A
human viewer is led to believe two predator agents are acting in planned
coordination, though there is no real communication between them. The appearance
of planned cooperative behavior in a system with multiple reactive agents is taken
further in simulations of social insects like ants [Drogoul and Ferber, 1992], where
the behavior extends to different social roles being taken by the agents similar to that
in a real ants’ nest. Drogoul calls this Eco-Problem Solving.

It may be better to use the term Artificial Life [Langton, 1989] for those systems
whose approach to the goal of Artificial Intelligence is to model general life-like
behavior in an unpredictable environment and build upwards from this platform. The
name “Artificial Intelligence” could be reserved for the approach of building systems
that behave intelligently in a more restricted realm. The former could be seen as
building using horizontal layers, while the latter uses vertical layers. The emergence
of intelligent behavior from a collection of reactive agents is a further approach to
building intelligence. Drogoul [1993a] discusses this issue and demonstrates a chess
playing system whose behavior derives from the joint behavior of a collection of
agents, each representing an individual chess piece. This system plays chess to the
point where it can beat weak amateurs, but not a standard search-based computer
chess machine. Drogoul [1993b] has also shown that other classic planning problems,
such as the N-puzzle, can be tackled by collections of agents each of which has no
goal itself and works as a finite state automaton, making just tropistic movements.

Brooks’ robots are themselves collections of agents, since their behavior emerges
from the collective behavior of their layers. Taken further, with the reactive
components within an agent becoming simpler, we eventually reach the neural-
network architecture. Brooks [1991b] is however, careful to distinguish his work
from neural networks. He notes that neural networks consist of undifferentiated
components without a detailed design, whereas his robots are designed and built from
distinguishable components. However, the human brain can be considered as a
network of networks of neurons [Minsky, 1986] with different functions.

Brooks’ approach to building artificial intelligence without the use of representation
is criticized by Kirsh [1991]. Kirsh argues that the lack of internal representational
methods in reactive agents means they will always remain limited to animal-like
behavior. Without a representational language, agents are restricted to simply hard-
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wired goals and thus cannot define their own goals. Reactive agent communication is
on a simple basis, either attractant-repellant behavior, or indirectly through
mechanisms like the robot pebble-dropping involve changing the environment (called
stigmergy [Holland, 1996]).

10.4 Objects, Actors and Agents

Reactive agents, as described above, are similar in some ways to objects in the
computational sense. A reactive agent reacts to messages received on its input sensors
by changing its state and sending messages on its output effectors. An object reacts
on receiving messages by changing its state and sending messages to other objects.
The internal appearance is the same – to the agent the environment it works in as it
interacts through its sensors and effectors might be just another agent. Where it
differs is that agents have autonomy and seek primarily to satisfy their own goals
rather than simply respond to orders in a fixed way. The robot described previously
had the goal of reducing the x and y differences in its state to 0, while avoiding
crashing into blocks and responded to its inputs with whatever outputs would assist in
satisfying this goal. A computational object, however, would not vary its output
depending on its own desires, it simply responds in a predictable manner

Additionally, an agent is embodied not only in the sense of its physical presence in
and interaction with its environment, but also in having its own processor dedicated
to its own use. That is why an object can easily create new objects, since they are just
software entities that can be created by copying and instantiation, whereas robots
don’t usually create complete new bodies for new robots. (This excludes industrial
robots.) An actor in a concurrent object-oriented system, however, could be
considered as being created with its own processor, using the principle of virtual
parallelism discussed in Chapter 6. That is, the assumption that there are always
enough spare processors for any computations declared as running concurrently (with
the practical resource allocation hidden from view). So another approach to multi-
agent systems is to consider agents as a development from concurrent object-oriented
systems, with the addition of further autonomy built into the objects. This should be
distinguished from the use of parallelism for speedup purely to improve response
time. Here the division of tasks between objects is done on a conceptual basis. In
general, the emphasis is on separate objects with separate tasks in the solving of
problems, whereas parallel AI tends to be concerned with large numbers of similar
objects dividing out the work pragmatically.

Object-oriented programming emerged as a silver bullet [Brooks, 1987], as the next
attempt after structured programming to tackle the complexity barrier [Winograd,
1973] whereby computer systems become increasingly risky as their size increases:
difficult to construct, difficult to maintain and difficult to guarantee error-free. A
large part of the complexity is due to the complex nature of possible interactions
(planned and accidental) between different components of a computer program.
Structured programming partitioned code into blocks, thus limiting the range of
control transfers possible, but it left the data unconnected with the control structure.
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The key idea of object-oriented programming was encapsulating the data with code,
so that data access too is limited. Concurrent object-oriented programming maps the
logical distribution of the object paradigm onto the physical distribution of parallel
processors. As we have seen, GDC programming can be seen in terms of concurrent
object-oriented programming.

Miller and Drexler [1988] compare the encapsulation of data with the human
ownership of property: both establish protected spheres in which entities can plan the
use of their resources free of interference from unpredictable external influences. This
enables entities to act despite having limited local knowledge, aiding the division of
labor. They take the concept of encapsulation further and propose it be extended to
physical computational resources such as memory blocks or processor time slices.
Clearly this is necessary for a truly autonomous agent, since such an agent needs to
have assurance that it will have the physical resources necessary for it to remain in
active existence responding to inputs in real time. A robot has by definition its own
physical resources but a softbot would need ownership of a share on the machine on
which it resides.

Currently, concurrent languages work on a “socialist” planned economy where
resources are shared out as needed by a central planner or on an “anarchist” basis
where there is a free-for-all (as with human anarchism its success depends on the
assumption that all agents are benevolent towards each other). Miller and Drexler
[1988] propose a “capitalist” ownership of property, in which absolute ownership
rights are protected even where, for example, a planner might see cases where a
reallocation of resources would improve efficiency in reaching the overall goal.
While an agent which is currently idle cannot be forced to give room on a processor it
owns to another which needs the processing capacity, it is suggested that agents may
trade their ownership rights amongst themselves. Ideally, each agent is programmed
to fulfil its own goals and trades resources it has but does not need for resources it
needs but does not have (for example, time slices on a processor could be traded for
memory).  The result, it is claimed, will be a better allocation of resources overall
than could be obtained by a global allocation algorithm once the overall system
becomes so complex that it is not possible to operate a simple global resource
allocation algorithm. This is the classic free market economy argument, associated
with Adam Smith [1776] and later economists. The emergence of what from a global
perspective seems a planned algorithm from what on closer inspection seems
unplanned chaos is similar to that which has already been noted with eco-problem
solving, except here there is no suggestion that the components be restricted to simple
reactive agents.

As can be seen, once agents become truly autonomous, the ease with which
discussions on the organization of multi-agent systems slip into analogies with the
organization of human societies becomes irresistible. Fox [1991] suggests that such
analogies are not cute anthropomorphisms, but an inevitable response to the growing
complexity of computer systems and in particular to the problem of bounded
rationality [Simon, 1957], when the complexity of a problem exceeds the capacity of
a single agent to solve it. Organizational techniques to distribute problems amongst
human teams can be applied to distributed computer systems. For example, an
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alternative to arranging multi-agent systems on a flat market-type basis is to construct
hierarchies similar to management hierarchies in large organizations. Quoting
Galbraith [1973], Fox claims that in both human and computer systems, whereas
complexity suggests the market approach, uncertainty, defined as the difference
between the information available and the information necessary to make the best
decision, suggests the hierarchical approach. In the hierarchical approach, managers
can switch tasks and resources between employees as new information becomes
available, whereas the market approach requires the striking of contracts that cannot
be so easily altered.

Another way in which multi-agent systems develop from concurrent object-oriented
systems by employing human metaphors concentrates on the design of individual
agents, ascribing to them mental components such as beliefs, capabilities, choices and
commitments, standing in rough correspondence to their common sense counterparts
in human life. Such an agent is termed an intentional system [Dennett, 1987]. The
idea is most clearly developed by Shoham [1993] who describes a framework called
agent-oriented programming which may be considered a specialization of object-
oriented programming. Agent-oriented programming is a form of object-oriented
programming where the state of objects is restricted to parameters which can be
labeled as mental states and the messages between objects consist of “speech acts”
[Searle, 1969], informing, requesting, offering, promising and so on. The exact
mental attributes that should be given to an agent are a matter of contention.
Following McDermott [1978], Shoham stresses that the decision should not be
arbitrary but should enable the development of a theory that may be used non-trivially
to analyze a system. Beliefs, desires and intentions, leading to the terminology BDI
architecture [Rao and Georgeff, 1991] are a popular set of mental attributes used, but
Shoham prefers beliefs, obligations and capabilities. The values of the mental
attributes within the states are built up using knowledge representation formalism,
often a form of temporal logic.

The beliefs of an agent refer to the model of its environment it has built up. This
model may be incomplete and/or incorrect. In a multi-agent system it may include
beliefs about other agents, indeed in some multi-agent systems the environment may
consist solely of other agents. Desires are the overall goals of an agent, while
intentions are the elements of plans it has made to reach its desires. Shoham’s system
enables a stronger relationship between agents in a multi-agent system to be modeled,
since an obligation is a relationship between one agent and another, with one
committed to the other to bring about some situation. An intention in this case is an
obligation of an agent to itself. The capabilities of an agent are its physical abilities in
the environment it shares with the other agents.

Agents in Shoham’s system are programmed in a language called AGENT-0, which
constrains them to follow certain behaviors. Mental states may not be changed
arbitrarily, but only as a fixed response to speech acts. For example, an agent may not
drop its commitment to another agent, but an agent A may release another agent B
from a commitment that B has to A. An agent will always update its own beliefs in
response to a message informing it of new facts from another agent. In effect, every
agent believes every other agent is telling it the truth. The internal knowledge
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representation language of Shoham’s agents is restricted so that checking consistency
when new knowledge is added is tractable. A strong assumption of AGENT-0 is that
all internal updating in response to messages and execution of any commitments for a
particular time can be made in a single real-time interval. The whole system depends
on this cycle being performed each time a real-time system clock emits a signal,
which it does at fixed intervals.

10.5 Objects in GDC

As demonstrated in this book, programming concurrent objects can easily be done in
GDC. The behaviors below define an object of type xyobj that has just two simple
elements to its state, which may be set using messages setx and sety to set each
individually, and setxy to set both to the same value. The values of the components
of the state of the object may be obtained by sending it the messages valx and valy
with an unbound variable argument as a “reply slot”. A new xyobj object with the
same state values as the original may be obtained by sending the message new to the
object, with a reply slot for the reference to the new object:

xyobj([setx(V)|S],X,Y) :- xyobj(S,V,Y).
xyobj([sety(V)|S],X,Y) :- xyobj(S,X,V).
xyobj([setxy(V)|S],X,Y) :- xyobj(S,V,V).
xyobj([valx(V)|S],X,Y) :- xyobj(S,X,Y), V=X.
xyobj([valy(V)|S],X,Y) :- xyobj(S,X,Y), V=Y.
xyobj([new(A)|S],X,Y) :- xyobj(S,X,Y), xyobj(A,X,Y).

To create a new object of type xyobj with initial state values a and b the object
xyobj(S,a,b) is required. S may refer to the object, except that we can only safely
have one writer to a channel. To have several we need to write to separate channels
and merge. If it is necessary to share references to xyobj, we set up objects p and q

:- p(…,S1,…), q(…,S2,…), merge(S1,S2,S), xyobj(S,a,b)

which both have the xyobj as an acquaintance. In concurrent object-oriented
languages, all first-class values in a state are themselves objects, but this is not so in
GDC. Here the two values in the state of the xyobj are just values. If they were to be
objects, the behaviors for xyobj would be more complex:

xyobj([setx(V)|S],X,Y) :- xyobj(S,V,Y), X=[].
xyobj([sety(V)|S],X,Y) :- xyobj(S,X,V), Y=[].
xyobj([setxy(V)|S],X,Y)

:- xyobj(S,V1,V2), X=[], Y=[], merge(V1,V2,V).
xyobj([valx(V)|S],X,Y)

:- xyobj(S,X1,Y), merge(V,X1,X).
xyobj([valy(V)|S],X,Y)

:- xyobj(S,X,Y1), merge(V,Y1,Y).
xyobj([new(A)|S],X,Y)

:- xyobj(S,X1,Y1), xyobj(A,X2,Y2), merge(X1,X2,X),
merge(Y1,Y2,Y).

xyobj([],X,Y) :- X=[], Y=[].
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An object which is input is represented by a channel used as a stream to output
messages, an object which is output is represented by a channel used as a stream to
input messages. Using an object as an argument in a recursive behavior counts as
outputting it. References to an object are tied together by merging all the input
streams, representing each place the object is output into one stream that is sent to the
input occurrence of the object. If there are no output occurrences of an object which is
input, the variable used for its input is sent the empty list value, as in the first three
behaviors above where the input objects X and Y are no longer referred to, being
replaced by V. The final behavior which has been added above is similar to a
destructor operator in conventional object-oriented programming, detailing the
behavior of an object when it no longer has any references. In this case, xyobj
terminates itself and also terminates its references to its acquaintance objects. This
would give automated garbage collection of unreferenced objects were it not for the
problem of self-reference. As an object may have a reference to itself as an
acquaintance, or to an acquaintance which has itself as an acquaintance, or so on, so a
clique of objects with only internal references could remain in existence.

To give an example of a behavior in which messages are sent in response to messages
received, consider additional messages, copyx and copyy, similar to valx and valy.
However, the object returns a reference to new copies of the X and Y acquaintances
rather than references to the original object. If we assume X and Y are programmed to
respond to new messages similarly to an xyobj object, the following will give this
effect:

xyobj([copyx(A)|S],X,Y) :- X=[new(A)|X1], xyobj(S,X1,Y).
xyobj([copyx(A)|S],X,Y) :- Y=[new(A)|Y1], xyobj(S,X,Y1).

The flexible nature of GDC means that many techniques, which in dedicated object-
oriented languages require special language features, may be programmed without
introducing new primitives. For example, consider a version of our original xyobj
(with non-object X and Y values) in which we want two classes of access, one of
which may rewrite the values in the state of the object, but the other of which may
only read them. This can be done by having two output streams as references to an
xyobj object, one with privileged access (able to use the setting operations), the other
without:

xyobj(S,[setx(V)|P],X,Y) :- xyobj(S,P,V,Y).
xyobj(S,[sety(V)|P],X,Y) :- xyobj(S,P,X,V).
xyobj(S,[setxy(V)|P],X,Y) :- xyobj(S,P,V,V).
xyobj([valx(V)|S],P,X,Y) :- xyobj(S,P,X,Y), V=X.
xyobj([valy(V)|S],P,X,Y) :- xyobj(S,P,X,Y), V=Y.
xyobj(S,[valx(V)|P],X,Y) :- xyobj(S,P,X,Y), V=X.
xyobj(S,[valy(V)|P],X,Y) :- xyobj(S,P,X,Y), V=Y.
xyobj(S,[new(A)|P],X,Y) :- xyobj(S,P,X,Y), xyobj(B,A,X,Y), B=[].
xyobj([new(A)|S],P,X,Y) :- xyobj(S,P,X,Y), xyobj(A,B,X,Y), B=[].
xyobj([],[],X,Y).

The two behaviors for the new message show how either privileged or normal access
may be granted. A new message received on the privileged stream causes a new
xyobj object to be created and returns the privileged reference to that object. A new
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message on the standard stream returns a standard reference to the new xyobj object.
Clearly, in a complex system, any number of classes of access rights could be
programmed in.

In a similar way, express mode message passing, as employed in the concurrent
object-oriented language ABCL/1 [Yonezawa et al., 1986] may be programmed by
having a separate stream for express messages:

xyobj(S,[setx(V)|E],X,Y) :- xyobj(S,E,V,Y).
xyobj(S,[sety(V)|E],X,Y) :- xyobj(S,E,X,V).
xyobj(S,[setxy(V)|E],X,Y) :- xyobj(S,E,V,V).
xyobj(S,[valx(V)|E],X,Y) :- xyobj(S,E,X,Y), V=X.
xyobj(S,[valy(V)|E],X,Y) :- xyobj(S,E,X,Y), V=Y.
xyobj(S,[new(A,B)|E],X,Y) :- xyobj(S,E,X,Y), xyobj(A,B,X,Y).
xyobj([valx(V)|S],E,X,Y) :- unknown(E)

| xyobj(S,U,X,Y), V=X.
xyobj([valy(V)|S],E,X,Y) :- unknown(E)

| xyobj(S,E,X,Y), V=Y.
xyobj([setx(V)|S],E,X,Y) :- unknown(E)

| xyobj(S,E,V,Y).
xyobj([sety(V)|S],E,X,Y) :- unknown(E)

| xyobj(S,E,X,V).
xyobj([setxy(V)|S],E,X,Y) :- unknown(E)

| xyobj(S,E,V,V).
xyobj([new(A,B)|S],E,X,Y) :- unknown(E)

| xyobj(S,E,X,Y), xyobj(A,B,X,Y).
xyobj([],[],X,Y).

A message is taken from the non-express stream only when there are no messages
available on the express stream, so it is an unbound channel. Here, new xyobj
objects are returned with both their normal and express streams available. As an
alternative to the use of unknown, the alternatively construct of KL1 could be
used to separate behaviors dealing with handling messages from the express stream
(which would be placed before the alternatively) from behaviors dealing with
handling messages from the standard stream.

The creation of new xyobj objects by sending a new message to an existing xyobj
object indicates a form of prototyping [Borning, 1986], that is new objects being
created by cloning old ones. Prototyping is associated with delegation [Lieberman,
1986] where several objects may delegate responsibility to a single shared parent
object. In our cloning of objects, new objects shared the acquaintances of old ones,
through streams, which are merged to a single object. This would give delegation as
Lieberman explained it. For example, a royal elephant is an elephant identical to the
prototype elephant except that its color is white. If E is a reference to a prototype
elephant object, a reference to a royal elephant object could be obtained in R by the
object royal(R,E) where the behaviors for royal are:
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royal([color(C)|R],E)
:- C=white, royal(R,E).

royal([new(A)|R],E)
:- royal(A,E1), royal(R,E2), merge(E1,E2,E).

royal([M|R],E) :- otherwise
| E=[M|E1], royal(R,E).

Any message other than a new message or a color message is passed on to the
prototype to deal with. However, a closer correspondence to inheritance, as
conventionally understood in the object-oriented programming paradigm, is obtained
by cloning the acquaintances of a new object when creating one by cloning, thus:

royal([color(C)|R],E)
:- C=white, royal(R,E).

royal([new(A)|R],E)
:- royal(A,E1), royal(R,E2), E=[new(E1)|E2].

royal([M|R],E) :- otherwise
| E=[M|E1], royal(R,E).

so each royal object has its own elephant object to send messages to other than
new and color messages. In this case, sharing of delegation is not wanted, since
otherwise a change in an attribute a royal elephant has by virtue of it being a form of
elephant would be propagated to every royal elephant. Note that, circular
acquaintance references give problems here as they did with garbage collection, since
if there was a rule that on cloning all acquaintances were cloned, a circular reference
would cause an infinite production of new messages as the circle was continuously
cycled.

The fact that stream merging is explicit in the GDC form of object-oriented
programming means programmers can alter the merge procedures as desired. For
example, a biased merge gives priority access to an object, so

:- p(…,S1,…), q(…,S2,…), bmerge(S1,S2,S), xyobj(S,a,b)

where bmerge passes on values from its second stream only when it has none on its
first stream causes the object p to have priority access to the xyobj object and

:- p(…,S1,…), q(…,S2,…), append(S1,S2,S), xyobj(S,a,b)

locks the xyobj object to the p object. Messages from the q object will only be
passed on to the xyobj object after all messages from the p object (assuming the
convention that objects close their references to acquaintances when they terminate
by sending the empty list, so S1 is a finite list).

Huntbach [1995] has considered proposals for a syntactic sugar or preprocessor so
that programs written in an object-oriented like notation may be translated to GDC in
the way described here. Although the approach considered in this preprocessor is a
compiler into GDC, rather than an interpreter written in GDC which interprets object-
oriented code, the results of the compilation could benefit from the program
transformation techniques outlined in Chapter 9. These would produce code that is
more efficient, but less obviously built on the object-oriented principle than code
directly output by the translator.
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Note that a difference between GDC and classic object-oriented programming as
found in Smalltalk and the concurrent object-oriented languages, is that GDC does
not work on the basis that all entities in the language are themselves objects. In GDC,
a client receiving a message knows which arguments are objects and which are
simple atomic values or tuples. Kahn and Miller [1988] point out this is an advantage
in avoiding Trojan horses. They consider a service that computes some mathematical
function according to a proprietary algorithm. If the numbers the client sends are
objects that report back the tests and operations performed on them, the secrecy of the
algorithm is compromised. There are no such problems if the numbers are known by
the receiver of the message to be just atomic numeric values.

10.6 Agents in GDC

Moving the concurrent object-oriented style of programming in GDC towards agent-
oriented programming in Shoham’s sense could be partly just a matter of scale. The
restriction that object states be seen in terms of attributes of mind and messages be
seen in terms of speech acts reacted to appropriately by objects, could simply be
adopted as a code of practice by programmers. Suppose one element of an object’s
state is defined to be its beliefs and another its obligations. Then, an insistence on a
common semantics could be made, such that for example when an object receives a
message inform(B) it adds belief B to its set of beliefs, while when it receives a
message request(C) it adds commitment C to its obligations. But there is nothing in
the semantics of GDC to stop it from idiosyncratically treating the messages the other
way round. Alternatively, a compilation approach could be used so that an agent
language like Shoham’s AGENT-0, with its semantics for these messages and for
object states, is translated into GDC. Note that there is no necessity for an agent to be
represented by a single GDC actor. As we indicated with the royal elephant example,
something, which is conceptually a single object, may be represented by more than
one GDC actor. So several actors could in fact represent an agent, with one managing
each component of the mental state. The beliefs of an agent could be represented
rather like the Linda tuple space we covered in Section 8.8. Hewitt and Inman [1991]
discuss a method by which collections of actors may be composed and viewed as a
single actor.

A successor to AGENT-0 is a language called PLACA [Thomas, 1994]. PLACA
works similarly to AGENT-0, with a propositional temporal logic language used to
construct the mental states of agents and a language for inter-agent communication of
beliefs and requests to take actions. It differs from AGENT-0 in allowing an agent to
request that another agent takes an action which requires planning to achieve,
whereas AGENT-0 allows requests only of primitive capabilities. The fact that
higher-level goals may be communicated in the place of a stream of actions planned
by one agent but requested of another agent to perform, cuts down on the
communication overhead. It is also assumed an agent will be able to do a better job of
planning for itself (including recovering from any unforeseen failures in the plan) on
the basis of an allocated high level goal than following a plan drawn up for it by
another agent.
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An agent in PLACA has an input buffer for both messages from other agents and
information from its sensors. It has two output buffers: one for messages intended for
other agents and one for commands to its own effectors. It can be seen to combine the
robot concept, with its sensors and effectors reacting with the physical environment
and the actor concept, with its interactions with the virtual environment of other
actors. In GDC, a mapping mechanism would be needed to map the logical goals onto
the physical architecture. The fact that GDC has a separate output stream for
messages to each acquaintance is a minor matter of difference. What GDC lacks,
however, to fully implement PLACA is real-time facilities.

At its most basic level, a PLACA agent’s computation consists of the following:

1. Collect messages received from other agents

2. Update its mental state as specified in its program

3. If sufficient time remains before the next tick of the clock, refine its plans

4. Begin execution of the action to be performed next and return to step 1.

Step 3 relies on a global clock and can be compared to the behavior of layered agents
considered above. So long as there is time available, an agent plans by refining its
goals, but it reacts when forced to, in this case by the clock. There is also a facility to
ignore input messages, leaving them in the buffer while planning continues. The
handling of express messages in GDC using unknown or alternatively as
described previously, suggests a clock mechanism could be handled by converting
clock ticks to messages on an express stream. Note that, if the actors performing the
planning share a processor with the process suspended waiting for the planning to
finish or for a clock tick to be received, the waiting process needs to have priority
over the planning processes. As soon as the clock tick is received, it can take action to
shut off further planning.

The physical architecture of guarded definite clause languages is currently not well
developed, not merely by accident but as a matter of principle. The languages
developed on the basis that a declarative style of programming gave programmers the
opportunity to break away from the architecture of the machines on which their
programs ran and to think purely in abstract terms. Parallel architectures were merely
a convenience, which enabled declarative languages to be implemented efficiently.
Since they were not based around the single processor architecture of the von
Neumann machine and since the declarative style involves breaking programs down
into discrete components with well-defined limited methods of communication,
concurrent declarative languages could, it was thought, easily be mapped onto
parallel architectures. It was in the interest of programmers not to have to be
concerned with this mapping. Just as it was in the interest of programmers in high-
level imperative languages not to be concerned with mapping variables onto registers,
core memory and backup store, but instead to leave the operating system to work it
out, while maintaining the illusion of a single store with infinite capacity.

It would not be desirable to depart from this principle of abstract parallelism where it
is not necessary to do so. When an algorithm is AND-parallel it should be enough to
break down the problem into pieces and leave the underlying system to decide where
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and when to run each piece, as when one is run relative to another does not affect the
algorithm. The guarded definite clause languages have an AND-parallel basis, but as
we saw with search algorithms can be used to model OR-parallel algorithms. At this
point, the assumption that we need not bother with the physical mapping of process to
processor broke down. The introduction of the priority operator recognized that
computational resources are not infinite and that in some cases the programmer needs
to ensure that finite computational resources are used in an effective manner.

The connection of processes to processors matters in multi-agent systems when as
shown, those agents are connected to the environment through physical sensors and
effectors, needing to make decisions in real time, with a process running an agent.
Miller and Drexler’s ideas of encapsulated control of physical resources may offer a
clean way to incorporate architectural considerations in GDC in a more sophisticated
manner than the simple priority mechanism and thus to construct agents in the sense
where an agent is an actor plus its physical embodiment. A priority attached to a
GDC actor has a meaning only in the global context of an entire GDC computation,
giving privileged access of a process to a processor only if other processes competing
for the processor have not been given higher priorities. However, “ownership” of a
processor or a time-slice on a processor due to resource encapsulation guarantees
access to it. The need for such a guarantee becomes more important as we move away
from systems of benevolent agents where all agents can be assumed to be working
towards a common goal, to competitive systems where agents are pursuing their own,
possibly conflicting, goals.

Waldspurger et al. [1992] describe an experimental system, called Spawn, which
implements market-based access to computational resources based on Miller and
Drexler’s ideas. The system of prioritizing they use is based on one developed for
Actor languages, but which could easily be adapted to guarded definite clause
languages. In it, every transaction must be sponsored by a tick, the basic unit of
computational resource. A global sponsor provides a flow of ticks which is divided
amongst lower level sponsors responsible for individual threads of computation. A
sponsor may either grant a number of ticks to a computation or deny further funding,
in which case the thread is aborted, rather like academic research. Funds may be
allocated in any manner, but may neither be created nor destroyed (unlike GDC
priorities, which can be set at any level arbitrarily). The Spawn system refines this
notion of sponsorship by replacing the straight matching of ticks against resources by
an auction system in which agents bid for time slices on idle processors. The
allocation system used is a sealed-bid second-price auction. That is, bidding agents
cannot access information about other agents’ bids, the agent bidding highest wins the
time-slice but pays the amount offered by the second-highest bidder. If there is no
second bidder, the time slice is given free. The Spawn system was used to implement
a Monte Carlo algorithm running on a network of processors, with figures indicating
some success in establishing a computational market.
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10.7 Top-Down and Bottom-Up Multi-Agent Systems

From the discussion so far, two approaches to multi-agent systems are emerging. One
approach, which could be called bottom-up, develops from work on robots and
softbots and focuses on the individual agent working in its environment. As we have
suggested, an intelligent agent might construct a partial model of its environment
noting the existence of other agents in the environment. The agent may have to exist
in an environment where other agents make changes to the detriment of its own
attempt to reach its goals. On the other hand, other agents may make changes, which
benefit it. We have discussed multi-agent behavior which simply emerges from
reaction rules, but more sophisticated agents may communicate with other agents in
their environment in order to minimize harmful interferences and maximize beneficial
interferences. A team at the Hebrew University in Jerusalem have given extensive
study to the topic of negotiation between agents which may not necessarily share
goals [Zlotkin and Rosenschein, 1991].

The second approach takes multi-agent systems as a development from object-
oriented systems, seeing the concept as a step in an evolutionary process of
programming methodologies forced by the growing complexity of problems tackled
by computer systems. In this case, the environment in which the agents work may be
a network of computers, the agent concept being used as a way to handle
computational resources efficiently without the need for a central planning
mechanism. The environment may also be the other agents, each agent
communicating directly with those it has as acquaintances, or as an alternative, it may
be some blackboard or tuple space so that the agents communicate only indirectly by
adding to and taking from the blackboard. This approach is top-down in that we are
concentrating on seeing a collection of agents working together to achieve a common
goal of the overall system.

In the top-down approach, agents may generally be assumed to be benevolent towards
each other. That is, since the agents in the system exist only to pursue some overall
system goal, an agent can assume that other agents it interacts with will not
deliberately set out to harm or mislead them and agents will willingly help each other
achieve their respective goals. For example, Shoham’s agents accept that when other
agents send them information that information will be true or at least believed by the
other agent to be true and accept requests from other agents without expecting a trade
in return. Such benevolence cannot be expected in systems where there is no overall
goal. We could imagine an automatic trading system in which agents are software
entities acting on behalf of human traders, each of whom has the separate goal of
maximizing his profit. Some trades may be beneficial to both parties: a trader who
has X and needs Y to complete some goal will trade with one who has Y and needs X.
Other trades will be seeking to make a profit at the expense of some other agent’s
loss. Consider two traders who both need X interacting with a third trader that has a
single X to exchange.

The top-down approach moves towards the bottom-up approach when we consider
dividing a problem into self-interested agents as a means of simplifying coordination.
At the cost of needing to resolve local conflict, we lose the need to consider complex
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global coordination. In a simple way, OR-parallel search in GDC works in this way.
We need a problem solved, but we are not sure which is the best way to solve it. So
we divide it amongst several agents each trying to solve it in a different way. These
agents compete for computational resources, the processors in a limited
multiprocessor system. Coordination is resolved purely at local level using the rule
that whichever of several agents competing for control of a processor can present the
most promising partial solution (given by its heuristic value) wins. “Competition of
the fittest” ensures that the best solution tends to win out. Jennings [1995] points out
that some degree of “social concern” amongst competing agents is beneficial. He
suggests that agents that ultimately have a common goal be under an obligation to
inform other agents if that goal has become obsolete, or conditions for reaching it
have changed, or it has itself changed in some way. Again, this can be seen as just a
more complex form, befitting a more complex problem, of the passing of bounds in
our distributed search programs which are used to inform search goals of limitations
on the search required of them.

The bottom-up approach moves towards the top-down approach as agents become
more sophisticated, using intelligent techniques to combine goals and develop plans
to work together to achieve them. It has already been noted that an agent may be
layered with a reactive component and a planning component. A third layer is used in
several systems (for example by Müller [1996]) to deal with the multi-agent
coordination work.

A third “middle-out” approach to multi-agent systems comes from distributed
systems. A distributed system is one that consists of several physically distributed
processors. Such processors may store separately maintained databases for example,
with the distributed system involving bringing together information from several
databases. Other forms of distributed systems link together processors containing
sensors and effectors distributed over a physical environment. Such systems move
into the field of distributed artificial intelligence (DAI) when artificial intelligence
techniques are incorporated either in the individual processors, or in their overall
coordination. DAI is sometimes used as a synonym for multi-agent systems (MAS),
but many researchers distinguish between the two [Stone and Velso, 1996]. MAS is
seen as a specialization of DAI which is only applicable when the components of a
DAI system achieve “agenthood” through a high degree of autonomy and possibly
through being constructed on an intentional basis and/or communicating with an
agent communication language.

Ygge and Akkermans [1997] give a critical discussion of the value of bringing agent
techniques into distributed systems. They discuss a classic distributed system
application, the control of air-conditioning in a building. They compare systems
constructed using standard control engineering methods, with systems constructed on
the basis of a collection of agents bidding in a market system for cooling power.
Surprisingly, their conclusion, based on empirical results, is that the multi-agent
approach is at least as effective as the more traditional approach.

Distributed systems may be constructed because of the need to bring together
physically distributed computational mechanisms dealing with a physical problem or
environment. More generally, it has been suggested [Tokoro, 1993] that there will be



Agents and Robots 341

an increasing tendency for computing systems to be constructed by making use of
remote services over networks. This can be seen as an extension of the object-
oriented idea of reusability. In object-oriented programming, programmers are
encouraged to make use of existing libraries of code rather than program from
scratch. In the network computer, programmers make use of existing services in a
more direct way, not by copying their code but by accessing their actual instances,
using an agent in the sense of code embodied by a processor, rather than an object in
the sense of just code. Gelernter and Carriero [1992] suggest that programmers will
move from being concerned mainly with the computational aspects of programming
to being concerned with the coordination aspects, with asynchronous ensembles of
computational entities being brought together by coordination languages becoming
the dominant model of computer systems in the future.

Programmers of such ensembles have the advantage of being able to use expensive
computational mechanisms and extensive databases without the expense of having to
maintain their personal copies. Rather they need only a network computer and access
rights for the limited time-share of the larger system they need. Miller and Drexler
[1988] describe the economic advantages of this “charge-per-use” as opposed to
“charge-per-copy” approach to the use of software. One major advantage is the
inhibition of software piracy. When Miller and Drexler wrote their paper, this could
be seen as an idealistic view of the future, but with the development of the Web it has
moved closer to reality. Currently, Web services tend to be offered free of charge (in
fact free access is exchanged for expected real-world publicity) or are available with
unrestricted access once a real-world agreement to exchange passwords has been
made. Most users of the Web offer little back in return. Miller and Drexler envisage a
world where a personal computer connected to a network may be offered to be used
by any large application, which needs computational resources. The active offering
and exchanging may be done by an agent rather than by the human computer owner.
A computer used intermittently by its owner for domestic tasks, such as playing
games or writing letters might be used (in exchange for real money, or some
computational access rights) by a computationally-bound service (say, a weather
forecasting system). The service searches (again through agents) for computational
power being offered, dividing its computations up as resources are located and bid
for.

10.8 GDC as a Coordination Language

As noted by Gelernter and Carriero [1989], the move towards multi-agent systems
emphasizes the need for coordination or composition [Nierstrasz and Meijler 1994]
languages, acting as the “glue” for joining diverse computational entities together. In
conventional languages, the only coordination activity built into the language is that
which binds the computation to the input/output devices attached to the computer on
which it runs and such I/O is often added grudgingly as an afterthought to a
computational model. Declarative languages can be even worse, since I/O is
dismissed as part of the dirty imperative stuff, which the languages are trying to
escape from. Recently [Wadler, 1997], the concept of monads has been popularized
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for obtaining imperative effects cleanly in functional languages. Logic languages
would seem to fall into this trap, since in their abstract form their only means of
communicating with the outside world is through the variables in the arguments to
logic goals. The inductively defined messages of guarded definite clause languages
rescues them from the solipsism of the classic declarative language. As shown in
Chapter 4, partially bound channels bring the ability for conversational information
exchange into guarded definite clause languages. All that is required is for a protocol
to be developed so that channels are connected to external devices, which obey the
“once-only” assignment rule (with the flexibility of partial binding) and guarded
definite clause languages become effective coordination languages. Such a
mechanism is already used in KLIC to provide I/O and links with the underlying
Unix system [Chikayama, 1995]. To print a value x for example from KLIC, it is
necessary to send a message of the fwrite(x) to a stream which has been linked to the
standard output via a primitive defined as making that link. There is no primitive
actors of the form write(x) which simply writes x.

This has some similarity to the monadic approach in functional programming where a
program evaluates to a stream of instructions to some external machine. However, in
the monadic approach there is just a single link between the “mind” of the program
and the “body” of the machine, the analogue of Descartes’ pineal gland as Wadler
[1997] puts it. The use of channels in GDC allows arbitrary numbers of linkages
between the program and the machine, each linkage representing a separate sense
organ or limb.

As noted in Chapter 8, the basis of the Linda mechanism proposed by Gelernter and
Carriero as a coordination language is that a few simple primitives may be added to
any language X to produce the parallel language Linda-X. One primitive, eval, sparks
a new parallel process and parallel processes communicate only through a global
shared database, with the primitive out putting data-objects called “tuples” into this
database, while rd and in read tuples from it (the former leaving it unchanged, the
latter consuming the tuple read). An in or rd statement may contain variables which
are matched against constants in the database, but if no matching tuple is found, the
process containing the statement suspends until another process introduces one with
an out. The system is multi-lingual since systems written in Linda-X may share a
database with systems written in some other language Linda-Y.

An obvious criticism of this approach is that the global database offers no security. A
tuple put out by one process intended for coordination with another may be removed
by a third process using an in inadvertently due to a programming mistake, or by
design if a hostile agent is attempting to “hack” into the system. Various ways of
tackling this problem, generally involving multiple tuple spaces [Gelernter, 1989;
Minsky and Leichter, 1994], have been proposed. Hewitt and Lieberman (1984) note,
however, that once one has got into the complexity of multiple blackboards, one has
lost the conceptual simplicity of the blackboard idea. The argument against using
straight message passing has been lost – a blackboard can be seen as just a
complicated form of message channel.

Primitives of similar simplicity to Linda’s could be added to existing languages, but
which, rather than use a global data base, communicate through shared single-
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assignment variables. Such variables have one writer and may have several readers
and only the process initializing the concurrency (and any process to which access
has been granted recursively) grants access to them. Any reader who needs to access
the value of a variable will suspend until it has been assigned one by its writer, but
unbound variables may otherwise be passed as first-class values. The variables may
be termed single assignments but could also be termed futures, as used in parallel
functional [Halstead, 1985] and object-oriented [Lieberman, 1987] languages. We use
the term future in the discussion below to emphasize the fact that the computations
being coordinated do not themselves have to be written in a logic language. The use
of single-assignment variables as a way of coping with parallelism has also been
considered in imperative languages [Thornley, 1995].

Any language which is to be used to build a component of a system coordinated in
this approach needs a way in which a program in that language may be invoked with
input and output futures and a way of reading and writing futures. A future may be
bound to a constant or to a tuple with a fixed number of arguments each of which are
further futures, which may be bound then or at a later stage. Some sort of error
condition may be raised if there is an attempt to bind a future that has already been
bound. Similarly, when a future is read, it is read as a name and a fixed-length list of
further futures, which is empty if the future is bound to a constant and stores the
arguments to a tuple otherwise. No guarantee can be given as to when or in which
order these further futures may be bound to. For simplicity, assume there is no back-
communication; that is, a reader of a variable is always a reader of arguments of a
tuple to which it becomes bound; a writer is always a writer to the arguments of any
tuple to which it binds a variable. Back communication could be added at the expense
of needing a slightly more complex protocol. Coordination is provided by giving
primitives in languages which provide this reading and writing of tuples; we shall
leave it to others to fit such primitives into existing languages, but they should be no
more difficult to incorporate than Linda’s in, rd and out.

This leaves the need for the equivalent of Linda’s eval. A process named p, which is
a reader of m futures and a writer of n could be set up by
eval(p(x1,…,xm)→(y1,…,yn)). Each x1,…xm is either a new future or one to which
the originating process is a reader or writer, while each y1,…,yn is either a future to

which the originating process is a writer or a new future. Any of x1,…xm which is a
new future becomes an output future in the calling process, while all y1,…yn whether
new or existing output futures become input futures.

We could also allow a form of eval which sets up multiple processes, possibly
communicating with each other through new futures. In this case, k concurrent
processes are set up by

eval(p1(x11,…,x1m1
) →(y11,…,y1n1

),…p(xk1,…xkmk
) →(yk1,…yknk

)).

Here, any xij must be either an existing future to which the originating process is a
reader or writer, or a new future and similarly any yij must be either an existing future
to which the originating process is a writer or a new future. No future may occur
more than once in a yij position, a new future occurring in a yij position becomes an
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input future in the originating process, any new future occurring in an xij position but
not a yij position becomes an output future in the originating process. An error
condition occurs if the originating process terminates without binding all its output
futures. This keeps the property that every future has exactly one writer and one or
more readers.

The eval construct allows GDC computations to be set up within foreign language
programs. These computations may use their variables as communication between
these programs and others similarly equipped with a GDC link. Note that for
simplicity of handling a mode is assigned either input or output, to channels used in
non-logic programs, with the → symbol separating those variables used for input
from those used for output.

It has been described how an interface to a guarded definite clause program can be
defined in another language X with similar ease to the addition of a few primitives to
make Linda-X. The channel binding coordination method removes the insecure tuple-
space blackboard. It fits in with the object-oriented concept, with modularity
guaranteed by the limited means of communication between objects. There is in fact
no way in which a guarded definite clause actor, communicating through a shared
single assignment can know whether that single assignment is shared with another
actor, or is in fact joined to a non-logic process viewing it as a “future” through the
protocol described above.

Kahn and Miller [1988] suggest that guarded definite clause languages have many of
the features required in a language for programming “open systems”, defined as “a
large collection of computational services that use each other without central
coordination, trust or complete knowledge of each other”. Guarded definite clause
actors react to a simultaneous influx of information received asynchronously, because
they must be able to deal with channels being bound by other actors on an
unpredictable timescale. Because channels are both the means of communication and
first-class citizens in the language, guarded definite clause systems have the property
of evolvability, allowing the dynamic linking of names to object and the transfer of
access to a server. Complete encapsulation of data, allowing services to interact with
untrustworthy clients is guaranteed in the guarded definite clause languages since the
only means by which a client may interact with a server is by putting a message on an
channel, which it takes as input and handles itself. The merging of input streams
gives safe mutual reference to objects.

Kahn and Miller note some points where guarded definite clause languages do not
work in a way ideal for open systems. The main one is that they do not have any
mechanisms for dealing with failure, either hardware or software. It is not reasonable
for a service to break because it receives a malformed request, but an actor can only
deal with an input pattern that matches with one of its behaviors. When failure occurs
because no behavior matches, the complete system fails, there is no simple way to
isolate and recover from failure. The guarded definite clause languages assume that a
computation moved to another processor will eventually complete, they do not allow
backtracking and reassignment of a partially completed computation. As noted by
Waldo et al. [1996] partial failure is a central reality of distributed computing caused
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when a machine crashes or a network link goes down. Given the lack of central
coordination, there may not be any agent able to determine that a component has
failed and inform other components of that failure. Clearly this is an area where more
work needs to be done on the guarded definite clause languages if they are to be used
on large-scale distributed networks.

10.9 Networks and Mobile Agents

As an example of the use of GDC for coordination, let us consider a simple setup that
simply coordinates two systems. Suppose we start with:

:- setup(AB,BA,ArgsA)@systemA,
setup(BA,AB,ArgsB)@systemB.

Here systemA and systemB could be considered separate processors or separate
networks of parallel processors. We assume the underlying setup is such that no actor
is moved from systemA to systemB as part of the built-in load balancing of GDC,
though if both are systems of parallel processors, actors may be moved about freely
between them without the programmer giving explicit instructions for it. The
arguments ArgsA and ArgsB could in fact be large numbers of arguments, including
links to sensors and effectors, single arguments are given here for the sake of
simplicity.

Let setup set up two processes, one to manage the system, the other to run a
program on the system:

setup(Out,In,Args)
:– split(Args,SysArgs,ProgArgs),

manager(Out,In,ForSelf,ForOther,SysArgs),
program(ForSelf,ForOther,ProgArgs).

The result of this is that two programs will be running, one on systemA, the other on
systemB and any communication between the two has to pass through a manager.
The stream ForSelf is intended to be used for messages to the system running the
program and ForOther for messages to the other system. Such messages could be
used to access services provided by the systems. The streams are separated and
merged as usual, so:

program(ForSelf,ForOther,Args)
:– split(Args,Args1,Args2),

merge(ForSelf1,ForSelf2,ForSelf),
merge(ForOther1,ForOther2,ForOther),
program1(ForSelf1,ForOther1,Args1),
program2(ForSelf2,ForOther2,Args2).

The manager may choose not to pass on messages intended for the other system, thus
we could have the behavior:

manager(Out,In,ForSelf,[Message|ForOther],Args)
:- acceptable(Message,Args,Flag),

manager1(Flag,Message,Out,In,ForSelf,ForOther,Args).
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where manager1 is defined as:

manager1(true,Message,Out,In,ForSelf,ForOther,Args)
:- Out=[Message|Out1],

manager(Out1,In,ForSelf,ForOther,Args).
manager1(false,Message,Out,In,ForSelf,ForOther,Args)

:- handle(Message,Args,Args1),
manager(Out,In,ForSelf,ForOther,Args1).

The second behavior for manager1 indicates the case where the manager decides to
handle the message itself rather than pass it on. Handling the message may cause its
own arguments to change and may also bind return channels in the message. The
presence of return channels in a message means that if it is accepted for sending to the
other system, a direct means of communication between two processes in the two
different systems, which does not go through the manager, is established. It is
assumed that the messages accepted by the manager are those that conform to a
protocol that limits the format of messages passed over.

The managers may need to negotiate about the extent to which they are willing to
accept messages from each other. Negotiations about shared work could be
formalized, for example in the way suggested by Zlotkin and Rosenschein [1989]. Let
us assume an agreement less complex than that, in which the systems simply agree to
charge each other one nominal unit for each transferred message handled, with the
proviso that one system may not go into a debt of 10 or more units to the other. The
manager actor will have an extra argument recording its credit level, so the initial
call to manager in setup is:

:- manager(0,Out,In,ForSelf,ForOther,SysArgs).

To maintain the credits, we have the following behaviors for manager to deal with
sending and receiving messages from the other system:

manager(Credit,Out,In,ForSelf,[Message|ForOther],Args)
:- acceptable(Credit,Message,Args,Flag),

manager1(Flag,Message,Credit,Out,In,ForSelf,ForOther,Args).
manager(Credit,Out,[Message|In],ForSelf,ForOther,Args)

:- Credit<10
| handle(Message,Args,Args1),

Credit1:=Credit+1,
manager(Credit1,Out,In,ForSelf,ForOther,Args1).

with manager1 defined by:

manager1(true,Credit,Message,Credit,Out,In,ForSelf,ForOther,Args)
:- Out=[Message|Out1],

Credit1:=Credit-1,
manager(Credit1,Out1,In,ForSelf,ForOther,Args).

manager1(false,Message,Credit,Out,In,ForSelf,ForOther,Args)
:- handle(Message,Args,Args1),

manager(Credit,Out,In,ForSelf,ForOther,Args1).

The second behavior for manager1 deals with the case where a message is not sent
but is instead handled locally. If the credit level reaches 10, messages from the other



Agents and Robots 347

system are not received but in effect left in a buffer. The system waits until it receives
messages to send and thus reduce its credit level, when they can be received in the
order sent. Note that the credit level is given as an argument to acceptable, as it
may be used as a factor in deciding whether to transfer a message. A behavior to
allow actors to check the credit level of their system may be useful as an actor’s own
decision on whether to send a message for the other system may depend on the credit
level:

manager(Credit,Out,In,[credit(C)|ForSelf],ForOther,Args)
:- C=Credit, manager1(Credit,Out,In,ForSelf,ForOther,Args1).

Clearly, the system management described here could be extended to more complex
arrangements than just two systems communicating with each other. A whole
network of systems can be envisaged, each with its own manager process managing
communication between processes on the system and processes on other systems.

An actor can move itself from one system to the other by converting itself into a
message and sending itself on the ForOther stream. The following behavior will do
this for the actor actor:

actor(ForSelf,ForOther,Args)
:- ForSelf=[], ForOther=[actor(Args)].

The actor has to trust it will be unpacked and turned back into an actor once it has
been sent to the other system. The following behavior will do this:

manager(Credit,Out,[actor(PArgs)|In],ForSelf1,ForOther1,Args)
:- Credit<10
| actor(ForSelf2,ForOther2,PArgs),

Credit1:=Credit+1,
manager(Credit1,Out,In,ForSelf,ForOther,Args),
merge(ForSelf1,ForSelf2,ForSelf),
merge(ForOther1,ForOther2,ForOther).

It is assumed here that the charge for running actor on the new system will be one
credit unit, though a more complex system of charging based on estimated resource
usage could be developed. Note that the arguments to actor will be the same ones as
on the old system including variables which may be used as channels for
communication without going through the manager. The ForSelf and ForOther
streams however refer to the new situation, so ForSelf sends messages intended for
the new system that actor has migrated to and ForOther sends messages to the old
one. Alternatively the ForSelf and ForOther arguments to the new actor could be
put the other way round so that references to systemA and systemB in the code for
actor remain linked to those systems independently of where the code is executing.

The above gives some ideas as to how mobile agents [Knabe, 1996] may be
implemented in GDC. In this case, the idea that agents are autonomous is maintained,
since the actor has to take the initiative to migrate, the first moves towards migration
are not made by the system calling a process over. The migrating process is
dependent on the system it migrates to willingly accepting it, if it were somehow to
trick the system into giving it space and processing time to run, it would be a virus. In
a system involving resource encapsulation the process would have to be assigned
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resources, possibly involving some degree of negotiation between systems. The
giving of a limited amount of resources would act as a protection against the
migrating process taking over the system to which it has migrated.

However, mobile agents are generally objects that contain their own code. The code
must be in a form such that it is executable on the system migrated to. We have so far
assumed that every processor in a distributed system has access to a copy of the same
GDC code. Clearly this is not an assumption that can be made if we are considering
open systems. We cannot assume the code for actor on systemA is identical to the
code for actor on systemB. A mechanism for attaching code to messages could be
introduced in GDC. Alternatively, a meta-interpreter approach could be used. If
systemA and systemB both have copies of the behaviors for some meta-interpreter,
a message exchanged between them could consist of data representing code that runs
on this meta-interpreter, plus an initial meta-interpreter goal.

The abstract nature of GDC means it has the platform independence that is essential
for a language for mobile agents. In addition, its declarative nature means there are no
problems with name conflicts, external references and the like. A goal and its
behaviors are a self-contained unit, with shared variables providing all necessary
communication. Knabe [1996] argues for a functional based language to be used for
mobile agents on similar grounds. We have suggested ways in which resource
awareness may be incorporated into GDC, as for example proposed in the Java-
extension Sumatra [Acharya et al., 1996]. Although Java [Gosling and McGilton,
1995] has attracted much attention as a language for Internet applications, it is limited
in its scope for programming truly mobile agents, classified as at best a weakly
mobile code language [Cugola et al., 1996]. Java lacks built-in communication
primitives and agents are unable to initiate migration themselves. The authors of the
Sumatra language claim that truly mobile agents need three properties:

1. awareness – the ability of a computational agent to monitor the availability and
quality of computational resources in its environment;

2. agility – the ability to react quickly to asynchronous events such as changes in
the computational environment

3. authority – the ability of agents to control the way in which resources are used on
their behalf by system support.

The distributed computational environment in a mobile agent system is like the
physical environment in a multiple robot system. The system manager in our example
above works like Sumatra’s resource monitor.

10.10 Conclusion

We have moved a long way from the origin of guarded definite clause programming
with the Japanese Fifth Generation Initiative. The aim initially was to produce a
“parallel Prolog”, on the grounds that this would be the most suitable way to
implement intelligence programs on parallel architectures. Prolog was based not on
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the architecture of a computer, but on a knowledge representation system, predicate
logic, tried and tested by generations of philosophers. Computation in Prolog was
reasoning with logic and knowledge, plus reasoning was thought to equal
intelligence. In addition, the lack of a basis on computer architecture meant that
Prolog was not dependent on the single-processor von Neumann machine, unlike
standard high-level languages, which had been built up in an evolutionary manner
from machine code.

The Fifth Generation Initiative was buried by developments that were visible at its
start, but became much more prominent as it went on. The limitations of predicate
logic as a knowledge representation system became more obvious as logicians
struggled with problems (often involving Tweety the bird who may or may not be a
non-flying penguin) caused by the closed world assumption. Radical critiques of the
knowledge based approach to AI, such as the revived neural network community and
Brooks with his reactive robots, gathered forces. The cycle of hype and inevitable
disappointment at ambitious goals not being reached was seen, as it had been before
and undoubtedly will be again in AI. In the computer world, the standalone
mainframe was succeeded by the networked personal computer. While declarative
languages failed to find much of a market outside their academic developers, object-
oriented programming, in the shape of C++, boomed. The language C++ moved from
initial release to the language of choice for many new developments in a matter of
months, before a satisfactory description of it could be put together. Part of the reason
for its success was that it was a hybrid language, combining high-level object-
oriented principles with low-level control of physical computer architecture. Java
followed on its heels, claiming machine independence but not in the way dreamed of
by the declarative programmers. The first lesson to be learnt from this is the
importance of commercial backing in programming language adoption. The second
lesson was that ideas on programming languages originating in academic research
labs can eventually make it into commercial computing, but we should not
underestimate the timescale required for them to do so. C/C++/Java can be seen as
representing the ultimate triumph of Algol in the 1960s Algol v FORTRAN/Cobol
war.

The Fifth Generation Project concluded viewing the language it developed as its main
achievement [Shapiro and Takeuchi, 1993]. It was flexible [Huntbach and Ringwood,
1995], implementable [Rokusawa et al., 1996] and recognized by some [Kahn and
Miller, 1988] as having potential unmet by most other current languages. However, it
was not a “parallel Prolog”. Prolog turned out to be far more dependent on a single
processor and global structures than was thought when it was adopted as the base for
the Fifth Generation. In making compromises necessary to map the logic paradigm
onto parallel architecture, many considered the guarded definite clause languages had
lost those aspects of logic programming which made it attractive. The Holy Grail of a
language in which programs were logical statements continued to be pursued
elsewhere [Hill and Lloyd, 1994; Wetzel, 1997].

What had been achieved was an abstract concurrent language. The clarity of this
achievement was clouded by arguments over whether it was really logical and
differences over minor matters [Shapiro, 1989] which hid the fact that several teams,
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not only the Japanese one but elsewhere, had converged on essentially the same
language. The symbol-processing nature of this language inherited from its logic
background made it suitable for the symbol processing of representational AI. Its
simple operational semantics and declarative nature made it suitable for program
tools such as debuggers, code transformers and abstract interpreters. It enabled the
programmer to think in terms of abstract concurrency while ignoring the real
architectural details of parallel machines.

Almost accidentally, the guarded definite clause languages were found to correspond
closely to the concurrent object-oriented paradigm. This looks less accidental when
one considers that object-oriented programming owes its origins to thinking in
parallel. The ancestor of object-oriented programming, SIMULA [Birtwistle et al.,
1973], was devised as a language to program simulations of systems of several
components working in parallel. The power of object-oriented programming may be
seen as lying in the way it enables the programmer to relax from the restrictions of
having to think about the data of the program being manipulated as a single object in
a purely sequential way. Rather, it exists in discrete parts that can be guaranteed to
remain unchanged in parallel with other parts changing. In performing an action on A
and leaving B unchanged then performing an action on B and leaving A unchanged
we are saved from having to think in terms of performing two sequential actions on
AB. Having to think of an order at all is an unnecessary complexity forced on us by a
purely sequential language. In parallel processing the division into discrete parts is
necessity in order to exploit the parallel capacity and the guarantee of non-
interference between the parts means we do not have to consider how to implement
the interference. In object-oriented programming it is imposed as a good software
engineering principle.

An alternative way into object-oriented programming is through the stream starting
with Hewitt’s [1977] Actors. Whereas the approach which starts from SIMULA is
evolutionary, following the move from assembly languages, through the early high-
level languages and through languages designed for structured programming, the
actors principle was revolutionary. It started from the first principle that computation
could be organized as a set of autonomous components exchanging messages rather
than as a variation on the single-processor von Neumann machine. Smalltalk can be
seen as an implementation of that principle, though adjusted to fit on to a sequential
architecture and influenced also by ideas on knowledge representation in AI [Minsky,
1975].

GDC being based on an abstract model and having broken away from Prolog’s
reliance on a global stack and strict sequential ordering of goals and clauses, has a
close affinity with Actors. Spurred by this, the authors have investigated its use to
implement algorithms viewed in an actors-like way, that is as collections of object
exchanging messages. The additional flexibility caused by the fact that
communications channels are first-class values in the language, rather than implicit in
a built-in communications structure, is useful in many cases. The logic programming
background gives GDC a firmer semantics than proposed actors languages have had,
aiding the development of programming tools. We considered one such tool, a partial
evaluator, in detail. The affinity logic programming has with meta-interpreters



Agents and Robots 351

provides further scope for methods of program development, indeed GDC can be
used a base language to implement other programming language paradigms.

The final chapter on agents challenges GDC to move beyond the abstract parallelism
of the Fifth Generation to the open systems that have transformed computer science
in recent years. As we have seen, the idea of building systems in terms of combining
intelligent agents builds on the actors version of object-oriented programming.
Interestingly, having moved away from direct control of the computer architecture,
our discussion of the suitability of GDC for implementing intelligent agents leads to
suggestions that reincorporate architectural control. However, they do so in a
disciplined high-level way. Access to lower level resource usage should be used only
where necessary and not forced on the programmer as a consequence of moving from
sequential systems. Annotations to control resource usage should not be entirely
orthogonal to those used to express the behavior of the program. There needs to be
some simple mechanism for reflection. In many cases, separating the two into
programs and meta-programs helps make the distinction clear. Programming parallel,
distributed and multi-agent systems is difficult as it involves coordinating several
activities happening at once. A language which enables the programmer to
concentrate on those aspects which are necessary to control – the behavior of the
algorithm, the design of individual agents, the control of resources where limited
resources are an issue – does much to simplify the problem.
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